The Am9513A/Am9513 System Technical
Timing Controller

Manual

S
>
4
0
m
O
z
o
o
™
=<
(@)
m
(72]

&

Advanced Micro Devices

Am9513A/Am9513
System Timing Controller
Technical Manual

The International Standard of Quality
guarantees the AQL on all electrical parameters,
AC and DC, over the entire operating range.

© 1984 Advanced Micro Devices, Inc.

The material in this document is subject to change without notice.
Advanced Micro Devices cannot accept responsibility for use of any circuitry
described other than circuitry embodied in an Advanced Micro Devices’ product.
The applications software contained in this publication are for illustration
purposes only and Advanced Micro Devices makes no representation or
warranty that such programs will be suitable for the use specified
without further testing or modification.

Printed in U.S.A.

TABLE OF CONTENTS

Page
PREFACE .. ittt e et e e e i
CHAPTER 1 — THE Am9513A/9513
L1 o Yo [BT 1o o TP 1-1
Functional DesCriptioNn e e e, 1-2
Interface Signal Descriptiono e 1-3
Control POort Registers i e e 1-5
Command Registerttt e 1-5
Data Pointer RegiSteriit ittt e e 1-5
Prefetch CirCUIt o i e 1-7
StatUS RIS Orttt it e e 1-8
Data Port Registerst e 1-8
CoUNEr LOGIC GIOUPS - - - .« ettt ittt e ettt et et et et et e e e s et e et e e 1-8
0T To 2 1= 1 T 1-8
Hold Register ... i i i e e 1-8
Counter Mode Registerot i e 1-8
Alarm Registers and Comparators ...ttt it e 1-8
Master Mode Control OptioNSttt ettt e e e 1-8
Counter Mode Operating Descriptionsc.iiiiiiiii i i iaaaes 1-11
Counter Mode Control OptionSsuii i e e 1-22
Command DesCriPtiONSottt et 1-25
CHAPTER 2 — Am9513A/9513 INTERFACING
AMO513 — CPUINEMACING .ot ttii it ittt it e e e e e et et e 2-1
L0 ool 114 T=T - o] o 2-1
REGISIEr ACCESS .. .ottt ittt ittt e e e e e 2-3
Information Transfer Protocolsouuiiiii i i 2-3
Software Initialization e e 2-3
Command INitiation i e 2-3
Setting the Data Pointer Registerc.oii i i 2-4
Readingthe Status Registert i et e 2-6
Reading fromthe Data Port i it e 2-7
Writingtothe Data Port 2-8
CHAPTER 3 — CONCATENATING COUNTERS ... e e 3-1
CHAPTER 4 — TIME-OF-DAY COUNTING
Initializing to Current Time-of-Dayt i e 41
Readingthe Current TIMeouinitut it e e et e ettt eeeens 4-3
Settingthe Alarm TimMeo e e e e et 4-3
Other Time-0f-Day Vaniationsc.uuuuniiiiit ettt iiian e 4-3
AmB080A/8085A Time-of-Day Software ... i 4-4
A Cookbook Approach to Time-of-Day Countinguiiiiiiiiiiiii ittt 4-7
Settime Software Using Macrost it et 4-9
Console Driven Clock Runs Under CP/Mo e i e en 4-9
CHAPTER 5 — EVENT COUNTINGottt e e e e e e iae e ns 5-1
CHAPTER 6 — FREQUENCY AND BAUD RATE GENERATION
Frequency GeNerationutenneene ettt et i e 6-1
AUto Baud Rate Generatoruutii ittt e e et 6-3
CHAPTER 7 — ONE-SHOT APPLICATIONSttt et 7-1
CHAPTER 8 — SOFTWARE CONSIDERATIONS AND PROGRAM EXAMPLES 8-1
APPENDICES
A — Dealing with Metastable Problems o i A-1
B — Keyto Timing Diagramscinueintiiit it ittt et e s B-1

C — Am9513 Software DefinitioNsottt i it et et ettt e et e e C-1

TABLE OF CONTENTS (Cont.)

D — Am9513 Macro Command SUMMANYttt et e eeiiiaiae e enannns D-1
E — Am9513 Macros for AmB080/AMBO8Sttt it ittt it ittt e e E-1
F — AMOS18 MacCros fOor Z80 oottt it i et et et e e e et e F-1
G — AMO513 MaCroS fOr Z8000 ... ittt ettt et et e e e e e e G-1
H — AMO513 C Definitionsottt e e e e H-1

PREFACE

This manual describes the functional operation of the Am9513 System Timing
Controller and its typical hardware and software applications.

Due to the complexity of this device, the first two chapters of this book are
required reading before attempting to use the device. Detailed timing
information is not contained in this manual, it is published in a separate
document, called “Am9513 Electrical Specification,” and is available from
any Advanced Micro Devices Sales Office, representative or franchised
distributor or directly from AMD Literature Distribution (MS-82) P.O. Box 3453,
Sunnyvale, CA 94088.

The AmZ8073 is functionally identical to the Am9513, but offers timing
parameters that are optimized for operation with the AmZ8000*
microprocessor.

The Am9513A is a functionally enhanced version of the Am9513, and fully
compatible with the Am9513. The new, additional features of this device
are pointed out in the text.

*Z8000 is a trademark of Zilog, Inc.

Chapter 1
The Am9513A/Am9513

INTRODUCTION

Manipulation and coordination of timing parameters and event
sequences are universal system attributes. At the most funda-
mental levels of control, time sequences are intimately embed-
ded in the essential hardware and interface concepts of all pro-
cessors: the necessary flows of step-by-step procedures are
inherent in the execution of even the most basic programs. Atthe
interface level, both internal and external hardware coordination
usually require several types of timing-oriented exchanges. In
general, control of system and sub-system processes will often
involve sophisticated levels of counting, sequencing and timing
manipulations. The specific mix of such activities will, of course,
be application dependent, yet counting/timing concepts are at
least fundamentally involved in all system operations, from the
simplest sequencing of a hardware interface to the complex
interaction of high-level processes.

Time-related activities fall into a wide variety of categories. Fre-
quency generation, waveform duty cycle control, event counting,
interval measurement, precise periodic interrupts, time-of-day
accumulation, delays, gap detection, etc., are just a few of the
types of operations typically undertaken. When the system must
accomplish several of these activities, especially when some
measure of concurrency is necessary, a significant portion of the
available processing and/or hardware logic resources can be
consumed. Throughput limitations easily arise.

A specialized circuit with enough versatility to handle many types
of counting and timing functions would therefore be able to
simplify software, improve system performance and decrease
system chip count. The Am9513 System Timing Controller has
been designed to accomplish just such a task. It provides signifi-
cant capability for waveform generation, counting, timing and

intervalometer functions for many types of processor-oriented
systems. It offers an unusually versatile control structure that
allows the use of many operating configurations so that a wide
variety of applications can be efficiently serviced.

The operating philosophy of the Am9513 is based on the use of
general-purpose counters that can be controlled in various ways
to produce the functions desired. Broadly, use of the counters
falls into two classic categories: (a) count accumulation, and (b)
frequency division.

In the first case, the counter simply accumulates a count of
transitions that occur on its input. An output thatindicates the zero
state of the counter would be of only incidental interest. The
counter value should be available at any time to the associated
CPU or it might be compared with some independent value. The
accumulated count might be modified or the counter input con-
ditioned by various controls, including hardware and software
gating functions; in any event, in these types of applications, it is
the value of the actual count that is of interest.

Inthe case of frequency division, on the other hand, itis an output
waveform that is of interest and the counter input information may
be incidental. With an output signal that indicates the zero state of
the counter, selection of the effective length of the counter and the
input frequency are controlled to provide the desired output fre-
quency. Additional controls may allow various types of output
waveforms to be generated from the base output frequency, but
the actual counter value will usually not be of direct interest.

The Am9513 has been designed to handle effectively both modes
of operation, even intermixed on the same chip. In many in-
stances, of course, both types of counter usage will be combined
to provide the desired function.

SOURCE 1-5
GATE 1-5 5,
L
x1
16-BIT COUNTER 5
- OSCILLATOR T SaArER COUNTER 5 LOGIC GROUP [—— ouTs
INPUT
FOUT =——————] 4BIT COUNTER SELECT COUNTER 4 LOGIC GROUP |—— ouT4
FOUT DIVIDER o
8-BIT 6-BIT 8-BIT
commano |—| Dpata STATUS COUNTER 3 LOGIC GROUP |—— ouTa
REGISTER POINTER REGISTER
A
.1 : —
0B0-087 s BUFFER © ol dLuN COUNTER 2 LOGIC GROUP |———= oUT2
DB8-DB1S 7= AND MUX
| * T I
WR ———— p| POWER oN COUNTER 1 LOGIC GROUP |——= ouT1
RD INTERFACE
5— o CONTROL
‘;ﬂ: vee vss L ¥ l

MOS-169

Figure 1-1. General Block Diagram

1-1

FUNCTIONAL DESCRIPTION

The Am9513 System Timing Controller (STC) is a support device
for processor oriented systems that is designed to enhance the
available capability with respect to counting and timing opera-
tions. It provides the capability for programmable frequency syn-
thesis, high resolution programmable duty cycle waveforms,
retriggerable digital timing functions, time-of-day clocking, coin-
cidence alarms, complex pulse generation, high resolution baud
rate generation, frequency shift keying, stop-watching timing,
event count accumulation, waveform analysis and many more. A
variety of programmable operating modes and control features
allow the Am9513 to be personalized for particular applications as
well as dynamically reconfigured under program control.

The STC includes five general-purpose 16-bit counters. A variety
of internal frequency sources and external pins may be selected
as inputs for individual counters with software selectable active-
high or active-low input polarity. Both hardware and software
gating of each counter is available. Three-state outputs for each
counter provide either pulses or levels. The counters can be
programmed to count up or down in either binary or BCD. The
accumulated count may be read without disturbing the counting
process. Any of the counters may be internally concatenated to
form an effective counter length of up to 80 bits.

The Am9513 block diagrams (Figures 1-1, 1-2 and 1-3) indicate
the interface signals and the basic flow of information. Internal
control lines. and the internal data bus have been omitted. The
control and data registers are all connected to acommon internal
16-bit bus. The external bus may be 8- or 16-bits wide; in the 8-bit
mode the internal 16-bitinformation is multiplexed to the low order
data bus pins DBO through DB7.

Aninternal oscillator provides a convenient source of frequencies
for use as counter inputs. The oscillator’s frequency is controlled
at the X1 and X2 interface pins by an external reactive network
such as a crystal. The oscillator output is divided by the Fre-
quency Scaler to provide several sub-frequencies. One of the
scaled frequencies (or one of ten input signals) may be selected
as an input to the FOUT divider and then comes out of the chip at
the FOUT interface pin.

The STC is addressed by the external system as two locations: a
Control port and a Data port. The Control port provides direct
access to the Status and Command registers, as well as allowing
the user to update the Data Pointer register. The Data portis used
to communicate with all other addressable internal locations. The
Data Pointer register controls the Data port addressing.

Among the registers accessible through the Data port are the
Master Mode register and five Counter Mode registers, one for
each counter. The Master Mode register controls the pro-
grammable options that are not controlled by the Counter Mode
registers.

Each of the five general-purpose counters is 16-bits long and is
independently controlled by its Counter Mode register. Through
this register, a user can software select one of 16 sources as the
counter input, a variety of gating and repetition modes, up or
down counting in binary or BCD and active-high or active-low
input and output polarities.

Associated with each counter are a Load register and a Hold
register, both accessible through the Data port. The Load register
is used to automatically reload the counter to any predefined
value, thus controlling the effective count period. The Hold regis-
ter is used to save count values without disturbing the count
process, permitting the host processor to read intermediate
counts. In addition, the Hold register may be used as a second
Load register to generate a number of complex output
waveforms.

All five counters: have the same basic control logic and control
registers. Counters 1 and 2 have additional Alarm registers and
comparators associated with them, plus the extra logic necessary
for operating in a 24-hour time-of-day mode. For real-time opera-
tion the time-of-day logic will accept 50Hz, 60Hz or 100Hz input
frequencies.

Each general counter has a single dedicated output pin. It may be
turned off when the output is not of interest or may be configured
in a variety of ways to drive interrupt controllers, Darlington buf-
fers, bus drivers, etc. The counter inputs, on the other hand, are
specifically not dedicated to any given interface line. Consider-
able versatility is available for configuring both the input and the
gating of individual counters. This not only permits dynamic re-
assignment of inputs under software control, but also allows
multiple counters to use a single input, and allows a single gate
pin to control more than one counter. Indeed, a single pin can be
the gate for one counter and, at the same time, the count source
for another.

A powerful command structure simplifies user interaction with the
counters. A counter must be armed by one of the ARM com-
mands before counting can commence. Once armed, the count-
ing process may be further enabled or disabled using the
hardware gating facilities. The ARM and DISARM commands
permit software gating of the count process in some modes.

SRC —3/o]
GATE —S4e]
FREQ —ft

TCN-1 ——1;&—

INPUT 16-BIT LOAD REGISTER
SELECT

LOGIC ‘

ouT
CONTROL

COUNTER
CONTROL
LOGIC

I | —

16-BIT MODE REGISTER

16-BIT COUNTER

out
N

16-BIT HOLD REGISTER

—

16-BIT COMPARATOR

t

16-BIT ALARM REGISTER

MOS-141

SRC —5/w]
eate —S4f npuT 16-BIT LOAD REGISTER
K SELECT
FREQ —/'—‘ LOGIC ouT
TCN—1 —=] ‘ CONTROL
COUNTER
CONTROL 16-BIT COUNTER | -
LOGIC out
[t)
16-BIT MODE REGISTER 16-BIT HOLD REGISTER
MOS-142

Figure 1-2. Counter Logic Groups 1 and 2

Figure 1-3. Counter Logic Groups 3, 4 and 5

The LOAD command causes the counter to be reloaded with the
value in either the associated Load register or the associated
Hold register. It will often be used as a software retrigger or as
counter initialization prior to active hardware gating.

The DISARM command disables further counting independent of
any hardware gating. A disarmed counter may be reloaded using
the LOAD command, may be incremented or decremented using
the STEP command and may be read using the SAVE command.
A count process may be resumed using an ARM command.

The SAVE command transfers the contents of a counter to its
associated Hold register. This command will overwrite any previ-
ous Hold register contents. The SAVE command is designed to
allow an accumulated count to be preserved so that it can be read
by the host CPU at some later time.

Two combinations of the basic commands exist to either LOAD
AND ARM or to DISARM AND SAVE any combination of count-
ers. Additional commands are provided to: step an individual
counter by one count; set and clear an output toggle; issue a
software reset; clear and set special bits in the Master Mode
register; and load the Data Pointer register.

Note: Separate LOAD and ARM commands should be used for
asynchronous operations.

INTERFACE SIGNAL DESCRIPTION

Figure 1-5 summarizes the interface signals and their abbrevia-
tions for the STC. Figure 1-4 shows the signal pin assignments for
the standard 40-pin dual in-line package.

VCC: +5 volt power supply
VSS: Ground

X1, X2 (Crystal)

X1 and X2 are the connections for an external crystal used to
determine the frequency of the internal oscillator. The crystal
should be a parallel-resonant, fundamental-mode type. An RC or
LC or other reactive network may be used instead of a crystal. For
driving from an external frequency source, X1 should be left open
and X2 should be connected to a TTL source and a pull-up
resistor.

FOUT (Frequency Out, Output)

The FOUT output is derived from a 4-bit counter that may be
programmed to divide its input by any integer value from 1
through 16 inclusive. The input to the counter is selected from any
of 15 sources, including the internal scaled oscillator frequencies.
FOUT may be gated on and off under software control and when
off will exhibit a low impedance to ground. Control over the
various FOUT options resides in the Master Mode register. After
power-up, FOUT provides a frequency that is 1/16 that of the
oscillator.

GATE1-GATES (Gate, Inputs)

The Gate inputs may be used to control the operations of indi-
vidual counters by determining when counting may proceed. The
same Gate input may control up to three counters. Gate pins may
also be selected as count sources for any of the counters and for
the FOUT divider. The active polarity for a selected Gate input is
programmed at each counter. Gating function options allow
level-sensitive gating or edge-initiated gating. Other gating
modes are available including one that allows the Gate input to

+svyvee —J1 0 40 [}—= ouT3
our2 =2 39 [J=— GATE2
outt =13 38 [}—= outs
GATE1 —={ |4 37 | }—= OuTs
Xt — s 36 [J=—— GATE3
x2 —{ 16 35 [J=—— GATE 4
FOUT =—{ 7 34 [J=— GATES
cb —={]s 33 | _J=—— SOURCE 1
WR —={"]9 32 [}=—— SOURCE 2
€S —={"]10 Am9513A/ 31| Je — SOURCE3
AD —={J11 AMBB 5. Sources
DBO ~=—={ |12 29 [} SOURCE §
DB1 =—={ 113 28 [}=~—= DB15
DB2 =—={ 14 27 [}=—= DB14
DB3 =[] 15 26 [}=—= DB13
DB4 =——={] 16 25 [}=—= DB12/GATE 5A
DB5 —=—={ |17 24 [} DB11/GATE 4A
pBs =18 23 [J=—= DB10/GATE 3A
DB7 =—={"] 19 22 [J=—= DBY/GATE 2A
GATE 1A/DBS =—={_] 20 21 VSS (GND)
Top View
Pin 1 is marked for orientation. MOS-172

Figure 1-4. Connection Diagram

Signal Abbreviation Type Pins
+5 Volts VCC Power 1
Ground VSS Power 1
Crystal X1, X2 /0, 1 2
Read RD Input 1
Write WR Input 1
Chip Select CsS Input 1
Control/Data c/D Input 1
Source N SRC input 5
Gate N GATE Input 5
Data Bus DB /10 16
Frequency Out FOUT Output 1
Out N ouT Output 5

Figure 1-5. Interface Signal Summary

select between two counter output frequencies. All gating func-
tions may also be disabled. The active Gate input is conditioned
by an auxiliary input when the unit is operating with an external
8-bit data bus. See Data Bus description. Schmitt-trigger circuitry
on the GATE inputs allows slow transition times to be used.

SRC1-SRC5 (Source, Inputs)

The Source inputs provide external signals that may be counted
by any of the counters. Any Source line may be routed to any or all
of the counters and the FOUT divider. The active polarity for a
selected SRC input is programmed at each counter. Any duty
cycle waveform will be accepted as long as the minimum pulse
width is at least half the period of the maximum specified counting
frequency for the part. Schmitt-trigger circuitry on the SRC inputs
allows slow transition times to be used.

OUT1-OUTS5 (Counter, Outputs)

Each 3-state OUT signal is directly associated with- a corre-
sponding individual counter. Depending on the counter config-
uration, the OUT signal may be a pulse, a square wave, or a
complex duty cycle waveform. OUT pulse polarities are individu-
ally programmable. The output circuitry detects the counter state
that would have been all bits zero in the absence of a reinitializa-
tion. That information is used to generate the selected waveform
type. An optional output mode for Counters 1 and 2 overrides the
normal output mode and provides a true OUT signal when the
counter contents match the contents of an Alarm register.

DB0-DB7, DB8-DB15 (Data Bus, Input/Output)

The 16, bidirectional Data Bus lines are used for information
exchanges with the host processor. HIGH on a Data Bus line
corresponds to one and LOW corresponds to zero. These lines
act as inputs when WR and CS are active and as outputs when
RD and CS are active. When CSis inactive, these pins are placed
in a high-impedance state.

After power-up or reset, the data bus will be configured for 8-bit
width and will use only DBO through DB7. DBO is the least sig-
nificant and DB7 is the most significant bit position. The data bus
may be reconfigured for 16-bit width by changing a control bit in
the Master Mode register. This is accomplished by writing an 8-bit
command into the low-order DB lines while holding the DB13-
DB15 lines at a logic high level. Thereafter all 16 lines can be
used, with DBO as the least significant and DB15 as the most
significant bit position.

When operating in the 8-bit data bus environment, DB8-DB15 will
never be driven active by the Am9513. DB8 through DB12 may
optionally be used as additional Gate inputs (see Figure 1-6). If
unused they should be held high. When pulled low, a GATENA
signal will disable the action of the corresponding counter N
gating. DB13-DB15_should be held high in 8-bit bus mode
whenever CS and WR are simultaneously active.

CS (Chip Select, Input)

The active-low Chip Select input enables Read and Write opera-
tions on the data bus. When Chip Select is high, the Read and
Write inputs are ignored. The first Chip Select signal after
power-up is used to clear the power-on reset circuitry. If Chip
Select is tied to ground permanently, the power-on reset circuitry
may not function. In such a configuration, the software reset
command must be issued following power-up to reset the
Am9513.

RD (Read, Input)

The active-low Read signal is conditioned by Chip Select and
indicates that internal information is to be transferred to the data
bus. The source will be determined by the port being addressed
and, for Data Port reads, by the contents of the Data Pointer
register. WR and RD should be mutually exclusive.

WR (Write, Input)

The active-low Write signal is conditioned by Chip Select and
indicates that data bus information is to be transferred to an
internal location. The destination will be determined by the port
being addressed and, for Data Port writes, by the contents of the
Data Pointer register. WR and RD should be mutually exclusive.

C/D (Control/Data, Input)

The Control/Data signal selects source and destination locations
for read and write operations on the data bus. Control Write
operations load the Command register and the Data Pointer.
Control Read operations output the Status register. Data Read

Package Data Bus Width (MM14)
Pin 16 Bits 8 Bits
12 DBO DBO
13 DB1 DB1
14 DB2 DB2
15 DB3 DB3
16 DB4 DB4
17 DB5 DB5
18 DB6 DB6
19 DB7 DB7
20 DB8 GATE 1A
22 DB9 GATE 2A
23 DB10 GATE 3A
24 DB11 GATE 4A
25 DB12 GATE 5A
26 DB13 (VIH)
27 DB14 (VIH)
28 DB15 (VIH)

Figure 1-6. Data Bus Assignments

and Data Write transfers communicate with all other internal
registers. Indirect addressing at the data port is controlled inter-
nally by the Data Pointer register.

Interface Considerations

All of the input and output signals for the Am9513 are specified
with logic levels compatible with those of standard TTL circuits.
See the Am9513 data sheet for specifications. In addition to
providing TTL compatible voltage levels, other output conditions
are specified to help configure non-standard interface circuitry.
The logic level specifications take into account all worst-case
combinations of the three variables that affect the logic level
thresholds: ambient temperature, supply voltage and processing
parameters. A change in any of these toward nominal values will
improve the actual operating margins and will increase noise
immunity.

Unprotected open gate inputs of high quality MOS transistors
exhibit very high resistances on the order of perhaps 104 ohms. It
is easy, therefore, in some circumstances, for charge to enter the
gate node of such an input faster than it can be discharged and
consequently for the gate voltage to rise high enough to break
down the oxides and destroy the transister. All inputs to the
Am9513 include protection networks to help prevent damaging
accumulations of static charge. The protection circuitry is de-
signed to slow the transistions of incoming current surges and to
provide low impedance discharge paths for voltages beyond the
normal operating levels. Note, however, that input energy levels
can nonetheless be too high to be successfully absorbed. Con-
ventional design, storage, and handling precautions should be
observed so that the protection networks themselves are not
overstressed.

Within the limits of normal operation, the input protection circuitry
is inactive and may be modeled as a lumped series RC as shown
in Figure 1-7a. The functionality active input connection during
normal operation is the gate of an MOS transistor. No active
sources or drains are connected to the inputs so that neither
transient nor steady-state currents are impressed on the driving
signals other than the charging or discharging of the input
capacitance and the accumulated leakage associated with the
protection network and the input circuit.

a)

INPUT

FUNCTIONALLY
ACTIVE
INTERNAL
CIRCUITRY

EQUIVALENT |
iNacTvE S \ i /
PROTECTION ~— d
CIRCUITRY = —
b)
x1 D ANA
>100kQ 3

x2[] WA | I:|J

MOS-149

Figure 1-7. Input Circuitry

The only exception to the purely capacitive input case is the X2
crystal input. As shown in Figure 1-7b, an internal resistor con-
nects X1 and X2 in addition to the protection network. The resistor
is a modestly high value of more than 100kohms.

Fanout from the driving circuitry into the Am9513 inputs will gen-
erally be limited by transition time considerations rather than DC
current limitations when the loading is dominated by conven-
tional MOS circuits. In an operating environment, all inputs
should be terminated so they do not float and therefore will not
accumulate stray static charges. Unused inputs should be tied
directly to Ground or VCC, as appropriate. An input in use will
have some type of logic output driving it and termination during
operation will not be a problem. Where inputs are driven from
logic external to the card containing this chip, however, on-board
termination should be provided to protect the chip when the
board is unplugged and the input would therefore otherwise float.
A pull-up resistor or a simple inverter or gate will suffice.

Power Supply

The Am9513 requires only a single 5V power supply. Maximum
supply currents are specified in the electrical specification at the
high end of the voltage tolerance and the low end of the tempera-
ture range. In addition, the current specifications take into ac-
count the worstcase distribution of processing parameters that
may be encountered during the manufacturing life of the product.
Typical supply current values, on the other hand, are specified at
a nominal +5.0 volts, a nominal ambient temperature of 25°C,
and nominal processing parameters. Supply current always de-
creases with increasing ambient temperature: thermal run-away
is not a problem.

Supply current will vary somewhat from part to part, but a given
unit at a given operating temperature will exhibit a nearly constant
power drain. There is no functional operating region that will
cause more than a few percent change in the supply current.
Decoupling of VCC, then, is straightforward and will generally be
used to isolate the Am9513 from VCC noise originating externally.

1-5

CONTROL PORT REGISTERS

The STC is addressed by the external system as only two loca-
tions: a Control port and a Data port. Transfers at the Control port
(C/D = High) allow direct access to the command register when
writing and the status register when reading. All other available
internal locations_are accessed for both reading and writing via
the Data port (C/D = Low). Data port transfers are executed to
and from the location currently addressed by the Data Pointer
register. Options available in the Master Mode register and the
Data Pointer control structure allow several types of transfer
sequencing to be used. See Figure 1-8.

Transfers to and from the Control port are always 8-bits wide.
Each access to the Control port will transfer data between the
Command register (writes) or Status register (reads) and Data
Bus pins DB0-DB7, regardless of whether the Am9513 is in 8- or
16-bit bus mode. When the Am9513 is in 8-bit bus mode, Data
Bus pins DB13-DB15 should be held at a logic high whenever CS
and WR are both active.

Command Register

The Command register provides direct control over each of the
five general counters and controls access through the Data port
by allowing the user to update the Data Pointer register. The
“Command Description” section of this data sheet explains the
detailed operation of each command. A summary of all com-
mands appears in Figure 1-21. Six of the command types are
used for direct software control of the counting process. Each of
these six commands contains a 5-bit S field. In a linear-select
fashion, each bit in the S field corresponds to one of the five
general counters (S1 = Counter 1, S2 = Counter 2, etc.). When
an S bit is a one, the specified operation is performed on the
counter so designated; when an S bit is a zero, no operation
occurs for the corresponding counter.

Data Pointer Register

The 6-bit Data Pointer register is loaded by issuing the appro-
priate command through the Control port to the Command regis-
ter. As shown in Figure 1-8, the contents of the Data Pointer
register are used to contro! the Data port multiplexer, selecting
which internal register is to be accessible through the Data port.
The Data Pointer consists of a 3-bit Group Pointer, a 2-bit Ele-
ment Pointer and a 1-bit Byte Pointer, depicted in Figure 1-9. The
Byte Pointer bit indicates which byte of a 16-bit register is to be
transferred on the next access through the Data port. Whenever
the Data Pointer is loaded, the Byte Pointer bit is set to one,
indicating a least-significant byte is expected. The Byte Pointer
toggles following each 8-bit data transfer with an 8-bit data bus
(MM13 = 0), or it always remains set with the 16-bit data bus
option (MM13 = 1). The Element and Group pointers are used to
select which internal register is to be accessible through the Data
port. Although the contents of the Element and Group Pointer in
the Data Pointer register cannot be read by the host processor,
the Byte Pointer is available as a bit in the Status register.

Random access to any available internal data location can be
accomplished by simply loading the Data Pointer using the com-
mand shown in Figure 1-10 and then initiating a data read or data
write. This procedure can be used at any time, regardless of the
setting of the Data Pointer Control bit (MM14). When the 8-bitdata
bus configuration is being used (MM13 = 0), two bytes of data
would normally be transferred following the issuing of the “Load
Data Pointer” command.

To permitthe host processor to rapidly access the various internal
registers, automatic sequencing of the Data Pointer is provided.

COMMAND & DATA POINTER
CONTROL REGISTER REGISTER
PORT
/8
4 5, STATUS ! LS
7 REGISTER 1
816 BYTE
DATA /1 POINTER
BUS -~
MULTIPLEXER
{ GROUP AND ELEMENT
ADDRESS
» A a6 { COUNTER 1 MODE REGISTER I
2
@
g 8/16 PREFETCH 8’16 DATA
3 4 LATCH 7 PORT COUNTER 1 LOAD REGISTER I
DATA MUX
PORT
va
an’s —-—-*I COUNTER 1 HOLD REGISTER l
___q{COUNTERS 2, 3, 4, 5 MODE,
LOAD AND HOLD REGISTERS
——’{ MASTER MODE REGISTER !
—-—‘f COUNTER 1 ALARM REGISTER l
COUNTER 2 ALARM REGISTER l
(S
MOS-501
Figure 1-8. Am9513 Register Access
Command cz | 6 | c5s | ca | 3| c2| ct]| co | sro
Register (
{
000 !
Data Pointer
ata roin'e E2 E1 G4 G2 G1 BP
Register
Byte Pointer —]
1 = Least Significant Byte Transferred Next
0 = Most Significant Byte Transferred Next
Element Pointer Group Pointer

000 = lllegal

00 = Mode Register
J 001 = Counter Group 1

01 = Load Register } Element Cycle Increment
10 = Hold Register
11 = Hold Register (Hold Cycle Increment) l

010 = Counter Group 2
011 = Counter Group 3
100 = Counter Group 4
101 = Counter Group 5
110 = lilegal

111 = Control Group

00 = Alarm Register 1

01 = Alarm Register 2] Control Cycle Increment
10 = Master Mode Reg.

11 = Status Register (No Increment)

‘f—-—/

MOS-173A

Figure 1-9. Data Pointer Register
1-6

Element Cycle Hold Cycle
Mode Load Hold Hold
Register | Register | Register | Register

Counter 1 FFO1 FFO09 FF11 FF19
Counter2 | FF02 FFOA FF12 FF1A
Counter 3 FFO3 FFOB FF13 FF1B
Counter 4 FFo4 FFOC FF14 FF1C
Counter 5 FF05 FFOD FF15 FF1D
Master Mode Register = FF17
Alarm 1 Register = FF07
Alarm 2 Register = FFOF
Status Register = FF1F

Notes:

1. All codes are in hex.

2. When used with an 8-bit bus, only the two low order hex
digits should be written to the command port; the ‘FF’ pre-
fix should be used only for a 16-bit data bus interface.

Figure 1-10. Load Data Pointer Commands

Sequencing is enabled by clearing Master Mode bit 14 (MM14) to
zero. As shown in Figure 1-11, several types of sequencing are
available depending on the data bus width being used and the
initial Data Pointer value entered by command.

When E1 = 0 or E2 = 0 and G4, G2, G1 point to a Counter Group,
the Data Pointer will proceed through the Element cycle. The
Element field will automatically sequence through the three val-
ues 00, 01 and 10 starting with the value entered. When the
transition from 10 to 00 occurs, the Group field will also be
incremented by one. Note that the Element field in this case does
not sequence to a value of 11. The Group field circulates only
within the five Counter Group codes.

If E2, E1 = 11 and a Counter Group is selected, then only the
Group field is sequenced. This is the Hold cycle. It allows the Hold
registers to be sequentially accessed while bypassing the Mode
and Load registers. The third type of sequencing is the Control
cycle. If G4, G2, G1 = 111 and E2, E1 # 11, the Element Pointer
will be incremented through the values 00, 01 and 10, with no
change to the Group Pointer.

When G4, G2, G1 = 111 and E2, E1 = 11, no incrementing takes
place and only the Status register will be available through the
Data port. Note that the Status register can also always be read
directly through the Control port.

For all of these auto-sequence modes, if an 8-bit data bus is used,
the Byte pointer will toggle after every data transfer to allow the
least and most significant bytes to be transferred before the
Element or Group Fields are incremented.

Prefetch Circuit

In order to minimize the read access time to internal Am9513
registers, a prefetch circuit is used for all read operations through
the Data port. Following each read or write operation through the
Data port, the Data Pointer register is updated to point to the next
register to be accessed. Immediately following this update, the
new register data is transferred to a special prefetch latch at the
interface pad logic. When the user performs a subsequent read of
the Data port, the data bus drivers are enabled, outputting the
prefetched data on the bus. Since the internal data register is
accessed prior to the start of the read operation, its access time is
transparent to the user. In order to keep the prefetched data
consistent with the Data Pointer, prefetches are also performed

R

Counter 1 Hold Reg. Counter 1 Mode Reg.

f f

Counter 2 Hold Reg. Counter 1 Load Reg.

f !

Counter 1 Hold Reg.

f

Counter 2 Mode Reg.

| {

Counter 2 L Reg.
Counter 5 Hold Reg. unter 2 Load Reg

| *

Counter 2 Hold Reg.
HOLD CYCLE

J

——

—

Alarm Reg. 1

Counter 5 Hold Reg.

!

‘ ELEMENT CYCLE
Alarm Reg. 2

f

Master Mode Reg.

N

CONTROL GROUP CYCLE

|

Status Reg.

i

STATUS CYCLE

MOS-174A

Figure 1-11. Daté Pointer Sequencing

after each write to the Data port and after execution of the “Load
Data Pointer” command. The following rules should be kept in
mind regarding Data port Transfers.

1. The Data Pointer register should always be reloaded before
reading from the Data port if a command other than “Load
Data Pointer” was issued to the Am9513 following the last
Data port read or write. The Data Pointer does not have to be
loaded again if the first Data port transaction after a command
entry is a write, since the Data port write will automatically
cause a new prefetch to occur.

2. Operating modes N, O, Q, R and X allow the user to save the
counter contents in the Hold register by applying an active-
going gate edge. If the Data Pointer register had been pointing
to the Hold register in question, the prefetched value will not
correspond to the new value saved in the Hold register. To
avoid reading an incorrect value, a new “Load Data Pointer”
command should be issued before attempting to read the
saved data. A Data port write (to another register) will also
initiate a prefetch; subsequent reads will access the recently
saved Hold register data. Many systems will use the “saving”
gate edge to interrupt the host CPU. In systems such as this
the interrupt service routine should issue a “Load Data
Pointer” command prior to reading the saved data.

Status Register

The 8-bit read-only Status register indicates the state of the Byte
Pointer bit in the Data Pointer register and the state of the OUT
signal for each of the general counters. See Figures 1-12 and
1-19. The OUT signals reported are those internal to the chip after
the polarity-select logic and just before the 3-state interface buffer
circuitry. Bits SR6 and SR7 may be 0 or 1.

The Status register OUT bit reflects an active-high or active-low
TC output, or a TC Toggled output, as programmed in the Output
Control Field of the Counter Mode register. Thatis, it reflects the
exact state of the OUT pin. When the Low Impedance to Ground
Output option (CM2-CMO0 = 000) is selected, the Status register
will reflect an active-high TC Output. When a High Impedance
Output option (CM2-CMO = 100) is selected, the Status register
will reflect an active-low TC output.

For Counters 1 and 2, the OUT pin will reflect the comparator
output if the comparators are enabled. The Status register bit and
OUT pin are active high if CM2 = 0 and active-low if CM2 = 1.
When the High Impedance option is selected and the comparator
is enabled, the status register bit will reflect an active-high com-
parator output. When the Low Impedance to Ground option is
selected and the comparator is enabled, the status register bit will
reflect an active-low comparator output.

The Status register is normally accessed by reading the Control
port (see Figure 1-8) but may also be read via the Data port as part
of the Control Group.

SR7 | SR6 | SR5 | SR4 | SR3 | SR2 | SR1 | SRO
— OouT 4 ouT 2 BYTE
OOR 1 POINTER
OuT 5 ouT 3 OuT 1
MOs-587

Figure 1-12. Status Register Bit Assignments

DATA PORT REGISTERS

Counter Logic Groups

As shown in Figures 1-2 and 1-3, each of the five Counter Logic
Groups consists of a 16-bit general counter with associated con-
trol and output logic, a 16-bit Load register, a 16-bit Hold register
and a 16-bit Mode register. In addition, Counter Groups 1 and 2
also include 16-bit Comparators and 16-bit Alarm registers. The
comparator/alarm functions are controlled by the Master Mode
register. The operation of the Counter Mode registers is the same
for all five counters. The host CPU has both read and write access
to all registers in the Counter Logic Groups through the Data port.
The counter itself is never directly accessed.

Load Register

The 16-bit read/write Load register is used to control the effective
length of the general counter. Any 16-bit value may be written into
the Load register. That value can then be transferred into the
counter each time the Terminal Count (TC) occurs. “Terminal
Count” is defined as that period of time when the counter contents

would have been zero if an exterpal value had not been trans-
ferred into the counter. Thus, theterminal count frequency can be
the input frequency divided by the value in the Load register. In all
operating modes either the Load or Hold register will be transfer-
red into the counter when TC occurs. In cases where values are
being accumulated in the counter, the Load register action can
become transparent by filling the Load register with all zeros.

Hold Register

The 16-bit read/write Hold register is dual-purpose. It can be used
in the same way as the Load register, thus offering an alternate
source for module definition for the counter. The Hold register
may also be used to store accumulated counter values for later
transfer to the host processor. This allows the count to be sam-
pled while the counting process proceeds without interruption.
Transfer of the counter contents into the Hold register is ac-
complished by the hardware interface in some operating modes
or by software commands at any time.

Counter Mode Register

The 16-bit read/write Counter Mode register controls the gating,
counting, output and source select functions within each Counter
Logic Group. The “Counter Mode Control Options” section of this
document describes the detailed control options available. Figure
1-18 shows the bit assignments for the Counter Mode registers.

Alarm Registers and Comparators

Added functions are available in the Counter Logic Groups for
Counters 1 and 2 (see Figure 1-2). Each contains a 16-bit Alarm
register and a 16-bit Comparator. When the value in the counter
reaches the value in the Alarm register, the Comparator output
will go true. The Master Mode register contains control bits to
individually enable/disable the comparators. When enabled, the
comparator output appears on the OUT pin of the associated
counter in place of the normal counter output. The output will
remain true as long as the comparison is true, that is, until the next
input causes the count to change. The polarity of the Comparator
output will be active-high if the Output Control field of the Counter
Mode register is 001 or 010 and active-low if the Output Control
field is 101.

MASTER MODE CONTROL OPTIONS

The 16-bit Master Mode (MM) register is used to control those
internal activities that are not controlled by the individual Counter
Mode registers. This includes frequency control, Time-of-Day
operation, comparator controls, data bus width and data pointer
sequencing. Figure 1-13 shows the bit assignments for the Mas-
ter Mode register. This section describes the use of each control
field.

Master Mode register bits MM12, MM13 and MM14 can be indi-
vidually set and reset using commands issued to the Command
register. In addition they can all be changed by writing directly to
the Master Mode register.

After power-on reset or a Master Reset command, the Master
Mode register is cleared to an all zero condition. This results in the
following configuration:

Time-of-Day disabled

Both Comparators disabled

FOUT Source is frequency F1
FOUT Divider set for divide-by-16
FOUT gated on

Data Bus 8 bits wide

Data Pointer Sequencing enabled
Frequency Scaler divides in binary

FOUT Divider FOUT Source
0000 = Divide by 16 0000 = F1
0001 = Divide by 1 0001 = SRC 1
0010 = Divide by 2 0010 = SRC 2
0011 = Divide by 3 0011 = SRC 3
0100 = Divide by 4 0100 = SRC 4
0101 = Divide by 5 0101 = SRC 5
0110 = Divide by 6 0110 = GATE 1
0111 = Divide by 7 0111 = GATE 2
1000 = Divide by 8 1000 = GATE 3
1001 = Divide by 9 1001 = GATE 4
1010 = Divide by 10 1010 = GATE 5
1011 = Divide by 11 1011 = F1
1100 = Divide by 12 1100 = F2
1101 = Divide by 13 1101 = F3
1110 = Divide by 14 1110 = F4
1111 = Divide by. 15 1111 = F5
MM15 | MM14 | MM13 | MM12 | MM11|{MM10| MM9 | MM8 | MM7 | MM6 | MM5 | MM4 | MM3 | MM2 | MM1 | MMO
L Four Gate Compare 2 Enable —! 1
0 = FOUT On 0 = Disabled
1 = FOUT Off (Low Z to GND) 1 = Enabled
Data Bus Width Compare 1 Enable
0 = 8-Bit Bus 0 = Disabled
1 =16-Bit Bus 1 = Enabled
Data Pointer Control Time-of-Day Mode
0 = Enable Increment 00 = TOD Disabled
1 = Disable Increment 01 = TOD Enabled; = 5 Input
Scaler Control 10 = TOD Enabled; +~ 6 Input
0 = Binary Division 11 = TOD Enabled; + 10 Input
1 = BCD Division
MOS-180
Figure 1-13. Master Mode Register Bit Assignments
Time-of-Day FOUT Source
Bits MMC and MM1 of the Master Mode register specify the Master Mode bits MM4 through MM?7 specify the source input for
Time-of-Day (TOD) options. When MMO = 0 and MM1 = 0, the the FOUT divider. Fifteen inputs are available for selection and

special logic used to implement TOD is disabled and Counters 1
and 2 will operate in exactly the same way as Counters 3,4 and 5.
When MMO = 1 or MM1 = 1, additional counter decoding and
control logic is enabled on Counters 1 and 2 which causes their
decades to turn over at the counts that generate appropriate
24-hour TOD accumulations. For additional information, see the
Time-of-Day chapter in this applications note.

Comparator Enable

Bits MM2 and MM3 control the Comparators associated with
Counter 1 and 2. When a Comparator is enabled, its output is
substituted for the normal counter output on the associated OUT1
or OUT2 pin. The comparator output will be active-high if the
output control field of the Counter Mode register is 001 or 010 and
active low for a code of 101. Once the compare output is true, it will
remain so until the count changes and the comparison therefore
goes false.

The two Comparators can always be used individually in any
operating mode. One special case occurs when the Time-of-Day
option is invoked and both Comparators are enabled. The opera-
tion of Comparator 2 will then be conditioned by Comparator 1 so
that a full 32-bit compare must be true in order to generate a true
signal on OUT2. OUT1 will continue, as usual, to reflect the state
of the 16-bit comparison between Alarm 1 and Counter 1.

1-9

they include the five Source pins, the five Gate pins and the five
internal frequencies derived from the oscillator. The 16th combi-
nation of the four control bits (all zeros) is used to assure that an
active frequency is available at the input to the FOUT divider
following reset.

FOUT Divider

Bits MM8 through MM11 specify the dividing ratio for the FOUT
Divider. The FOUT source (selected by bits MM4 through MM7) is
divided by an integer value between 1 and 16, inclusive, and is
then passed to the FOUT output buffer. After power-on or reset,
the FOUT divider is set to divide-by-16.

FOUT Gate

Master Mode bit MM12 provides a software gating capability for
the FOUT signal. When MM12 = 1, FOUT is off and in a low
impedance state to ground. MM12 may be set or cleared in
conjunction with the loading of the other bits in the Master Mode
register; alternatively, there are commands that allow MM12 to be
individually set or cleared directly without changing any other
Master Mode bits. After power-up or reset, FOUT is gated on.

When changing the FOUT divider ratio or FOUT source, transient
pulses as short as half the period of the FOUT source may appear

on the FOUT pin. Turning the FOUT gate on or off can also
generate a transient. This should be considered when using
FOUT as a system clock source.

Bus Width
Bit MM13 controls the multiplexer at the data bus interface in

order to configure the part for an 8-bit or 16-bit external bus. The TON-1 —]

internal bus is always 16-bits wide. When MM13 = 1, 16-bit data GATEN-1 —of T

is transferred directly between the internal bus and all 16 of the GATEN —= AND POLARITY e

external bus lines. In this configuration, the Byte Pointer bit in the GATEN+1 —=| LEVEL L] counter
Data Pointer register remains set at all times. When MM13 = 0, GATENA cmsrgv.

16-bit internal data is transferred a byte at a time to and from the

eight low-order external data bus lines. The Byte Pointer bit tog-
gles with each byte transfer in this mode.

When the Am9513 is set to operate with an 8-bit data bus width,
pins DB8 through DB15 are not used for the data bus and are
available for other functions. Pins DB13 through DB15 should be
tied high. Pins DB8 through DB12 are used as auxiliary gating
inputs, and are labeled GATE1A through GATE5A respectively.
The auxiliary gate pin, GATENA, is logically ANDed with the gate
input to Counter N, as shown in Figure 1-14. The output of the
AND gate is then used as the gating signal for Counter N.

Data Pointer Sequencing

Bit MM14 controls the Data Pointer logic to enable or disable the
automatic sequencing functions. When MM14 = 1, the contents
of the Data Pointer can be changed only directly by entering a
command. When MM14 = 0, several types of automatic
sequencing of the Data Pointer are available. These are de-
scribed in the Data Pointer register section of this document.

COUNTER MODE
REGISTER

!

MOS-179

Figure 1-14. Gating Control

Thus the host processor, by controlling MM14, may repetitively
read/write a single internal location, or may sequentially read/
write groups of locations. Bit MM14 can be loaded by writing to the
Master Mode register or can be set or cleared by software
command.

Scaler Ratios

Master Mode bit MM15 controls the counting configuration of the
Frequency Scaler counter. When MM15 = 0, the Scaler divides
the oscillator frequency in binary steps so that each sub-
frequency is 1/16 of the preceding frequency. When MM15 = 1,
the Scaler divides in BCD steps so that adjacent frequencies are
related by ratios of 10 instead of 16 (see Figure 1-15).

F1
F2
F3
F4
XY ————e]
osc 4BITS 4BITS 4 BITS 4 BITS F5
X2 o]
FREQUENCY SCALER
BCD Binary
Scaling Scaling
Frequency MM15 = 1 MM15 =0
F1 OsC 0sC
F2 F1 + 10 F1 + 16
F3 F1 + 100 F1 + 256
F4 F1 + 1,000 F1 + 4,096
F5 F1 + 10,000 F1 + 65,536
MOS-150

Figure 1-15. Frequency Scaler Ratios
1-10

Counter Mode

Special Gate (CM7)

of|r

Reload Source (CM6)

o|lo|m

oo | O
ojo|m

- lo| I

- O X

-

Repetition (CM5)

o|lo|o|>»

o|lo|o|O
o|o|m
oi=|0|®

o

al|lalolc

-

-

Gate Control (CM15-CM13)

000

LEVEL

EDGE | 000 | LEVEL | EDGE | 000

LEVEL

000

LEVEL

EDGE

Count to TC once, then disarm

Count to TC twice, then disarm

Count to TC repeatedly without disarming

Gate input does not gate counter input

Count only during active gate level

Start count on active gate edge and stop count
on next TC

Start count on active gate edge and stop count
on second TC

No hardware retriggering

Reload counter from Load Register on TC

Reload counter on each TC, alternating reload
source between Load and Hold Registers

Transfer Load Register into counter on each
TC that gate is LOW, transfer Hold Register
into counter on each TC that gate is HIGH.

On active gate edge transfer counter into Hold
Register and then reload counter from
Load Register

Counter Mode

Special Gate (CM7)

Reload Source (CM6)

o= |Z

PO QG

alal<

w
1
1

| Repetition (CM5)

olo|=~|Z

1

Gate Control (CM15-CM13)

000

LEVEL

EDGE | 000 | LEVEL | EDGE | 000

LEVEL

EDGE

000

LEVEL

Count to TC once, then disarm

Count to TC twice, then disarm

Count to TC repeatedly without disarming

Gate input does not gate counter input

Count only during active gate level

Start count on active gate edge and stop count
on next TC

Start count on active gate edge and stop count
on second TC

No hardware retriggering

Reload counter from Load Register on TC

Reload counter on each TC, alternating reload
source between Load and Hold Registers.

Transfer Load Register into counter on each
TC that gate is LOW, transfer Hold Register
into counter on each TC that gate is HIGH.

On active gate edge transfer counter into Hold
Register and then reload counter from
Load Register

On active gate edge transfer counter into
Hold Register, but counting continues

Notes:

1. Counter modes M, P, T, U and W are reserved and should not be used.

2. Mode X is available for Am9513A only.

Figure 1-16. Counter Mode Operating Summary

1-11

COUNTER MODE DESCRIPTIONS

Counter Mode register bits CM15-CM13 and CM7-CM5 select
the operating mode for each counter (see Figure 1-16). To
simplify references to a particular mode, each mode is assigned a
letter from A through X. Representative waveforms for the
counter modes are illustrated in Figures 1-17a through 1-17v.
(Because the letter suffix in the figure number is keyed to the
mode, Figures 1-17m, 1-17p, 1-17t, 1-17u and 1-17w do not
exist.) The figures assume down counting on rising source edges.
Those modes which automatically disarm the counter (CM5 = 0)
are shown with the WR pulse entering the required ARM com-
mand; for modes which count repetitively (CM5 = 1) the ARM
command is omitted. The retriggering modes (N, O, Q and R) are
shown with one retrigger operation. Both a TC output waveform
and a TC Toggled output waveform are shown for each mode.
The symbols L and H are used to represent count values equal to
the Load and Hold register contents, respectively. The symbols K
and N represent arbitrary count values. For each mode, the
required bit pattern in the Counter Mode register is shown; “don’t
care” bits are marked “X.” These figures are designed to clarify
the mode desctiptions; the Am9513 Electrical Specification
should be used as the authoritative reference for timing relation-
ships between signals. Appendix B provides a key to the
waveform symbols used in these diagrams.

To keep the following mode descriptions concise and to the point,
the phrase “source edges” is used to refer to active-going source
edges only, not to inactive-going edges. Similarly, the phrase
“gate edges” refers only to active-going gate edges. Also, again
to avoid verbosity and euphuism, the descriptions of some modes
state that a counter is stopped or disarmed “on a TC, inhibiting
further counting.” As is fully explained in the TC section of this
document, for these modes the counter is actually stopped or
disarmed following the active-going source edge which drives the
counter out of TC. In other words, since a counter in the TC state
always counts, irrespective of its gating or arming status, the
stopping or disarming of the count sequence is delayed until TC
is terminated.

MODE A
Software-Triggered Strobe with No Hardware Gating

CM15 | CM14 | CM13 | CM12 | CM11 | CM10 | CM9 | CM8
0 0 0 X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 0 0 X X X X X

Mode A, shown in Figure 1-17a, is one of the simplest operating
modes. The counter will be available for counting source edges
when itis issued an ARM command. On each TC the counter will
reload from the Load register and automatically disarm itself,
inhibiting further counting. Counting will resume when a new
ARM command is issued.

MODE B
Software-Triggered Strobe with Level Gating

cmis | omi4 [omia [cmiz [omrt | omio | eme | cme
LEVEL x | x| x | x| x

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 0 0 X X X X X

Mode B, shown in Figure 1-17b, is identical to Mode A except that
source edges are counted only when the assigned Gate is active.
The counter must be armed before counting can occur. Once
armed, the counter will count all source edges which occur while
the Gate is active and disregard those edges which occur while
the Gate is inactive. This permits the Gate to turn the count
process on and off. On each TC the counter will reload from the
Load register and automatically disarm itself, inhibiting further
counting until a new ARM command is issued.

TC
OUTPUT

S AVAVAVAVAVAVAVAVAN

WR \ /ARM
COMMAND
COUNT .

/O

TC TOGGLED
OUTPUT

X

MOs-588

Figure 1-17a. Mode A Waveforms

\/

ARM

COMMAND

1

N/

o D () (D) G C5) & & & G
TC OUTPUT n
c -
T SuTeuT X
MOS-589
Figure 1-17b. Mode B Waveforms
MODE C
Hardware-Triggered Strobe counter. The counter must be armed before application of the
triggering Gate edge; Gate edges applied to a disarmed counter
cm15 I CM14 ‘ CM13 | CM12 | CM11 | CM10 | CM9 | CM8 are disregarded. The counter will start counting on the first source
EDGE X X X X X edge after the triggering Gate edge and will continue counting
until TC. At TC, the counter will reload from the Load register and
automatically disarm itself. Counting will then remain inhibited
CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO until a new ARM command and a new Gate edge are applied in
0 0 0 X X X X X that order. Note that after application of a triggering Gate edge,
the Gate input will be disregarded for the remainder of the count
Mode C, shown in Figure 1-17c, is identical to Mode A, except that cycle. This differs from Mode B, where the Gate can be mod-
counting will not begin until a Gate edge is applied to the armed ulated throughout the count cycle to stop and start the counter.

oxre. XXX OO0

ARM

COMMAND

ir

COUNT
VALUE

) €D B & G

TC QUTPUT

TC TOGGLED
OUTPUT

A X
i

MOS-590

Figure 1-17c. Mode C Waveforms

1-13

MODE D
Rate Generator with No Hardware Gating

MODE E
Rate Generator with Level Gating

CM15 | CM14 |CM13 | CM12 | CM11 | CM10 | CM9 | CM8

cmis | cmi4 [omia | emiz | cmitt [emio [cme | cus

0 0 0 X X X X X

LEVEL X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO

0 0 1 X X X X X

0 0 1 X X X X X

Mode D, shown in Figure 1-17d, is typically used in frequency
generation applications. In this mode, the Gate input does not
affect counter operation. Once armed, the counter will count to
TC repetitively. On each TC the counter will reload itself from the
Load register; hence the Load register value determines the time
between TCs. A square wave rate generator may be obtained by
specifying the TC Toggled output mode in the Counter Mode
register.

Mode E, shown in Figure 1-17e, is identical to Mode D, except the
counter will only count those source edges which occur while the
Gate input is active. This feature allows the counting process to
be enabled and disabled under hardware control. A square wave
rate generator may be obtained by specifying the TC Toggled
output mode.

COUNT
comr X Xt XX::X X X XX

TC OUTPUT / \ —{ f / -
{

T X
(c

TC TOGGLED
OUTPUT

MOS-691

Figure 1-17d. Mode D Waveforms

W ./ 0

O (D @ () () () C2D) G () () 3 @ @ () O

TC
OUTPUT))
{f i
.
TC TOGGLED b o
OUTPUT

MOS-592

Figure 1-17e. Mode E Waveforms

1-14

MODE F MODE G
Non-Retriggerable One-Shot Software-Triggered Delayed Pulse One-Shot
CM15|CM14[CM13 CM12 |CM11 |[CM10 | CM9 | CM8 CM15 | CM14 | CM13 | CM12 | CM11 | CM10 | CM9 | CM8
EDGE X X X X X 0 0 0 X X X X X
CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 0 1 X X X X X 0 1 0 X X X X X

Mode F, shown in Figure 1-17f, provides a non-retriggerable
one-shot timing function. The counter must be armed before it will
function. Application of a Gate edge to the armed counter will
enable counting. When the counter reaches TC, it will reload itself
from the Load register. The counter will then stop counting,
awaiting a new Gate edge. Note that unlike Mode C, a new ARM
command is not needed after TC, only a new Gate edge. After
application of a triggering Gate edge, the Gate input is disre-
garded until TC.

In Mode G, the Gate does not affect the counter’s operation. Once
armed, the counter will count to TC twice and then automatically
disarm itself. For most applications, the counter will initially be
loaded from the Load register either by a LOAD command or by
the last TC of an earlier timing cycle. Upon counting to the first TC,
the counter will reload itself from the Hold register. Counting will
proceed until the second TC, when the counter will reload itself
from the Load register and automatically disarm itself, inhibiting
further counting. Counting can be resumed by issuing a new ARM
command. A software-triggered delayed pulse one-shot may be
generated by specifying the TC Toggled output mode in the
Counter Mode register. The initial counter contents control the
delay from the ARM command until the output pulse starts. The
Hold register contents control the pulse duration. Mode G is
shown in Figure 1-17g.

oe W\ /" NOOO0OO00COCAAN TNV VAN

COUNT
VALUE

XX

TC
OUTPUT (o
TC TOGGLED
OUTPUT M
o MOS-593
Figure 1-17f. Mode F Waveforms
?,233; L-1 XL-2X2X1 XHXH-1XH_2x 2 x 1 XLX L-1
TC
OUTPUT »
{ ‘
TC TOGGLED
OUTPUT) .
{ f =
WR _/\RM
COMMAND MOS-594

Figure 1-17g. Mode G Waveforms

1-15

MODE H
Software-Triggered Delayed Puise One-Shot with
Hardware Gating

omis | cmi4 [cmi3 | cmi2 | omitt | omio [cme | oms
LEVEL X | x| x| x| x

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 1 0 X X X X X

Mode H, shown in Figure 1-17h, is identical to Mode G except that
the Gate input is used to qualify which source edges are to be
counted. The counter must be armed for counting to occur. Once
armed, the counter will count all source edges that occur while the
Gate is active and disregard those source edges that occur while
the Gate is inactive. This permits the Gate to turn the count
process on and off. As with Mode G, the counter will be reloaded
from the Hold register on the first TC and reloaded from the Load
register and disarmed on the second TC. This mode allows the
Gate to control the extension of both the initial output delay time
and the pulse width.

MODE |
Hardware-Triggered Delayed Pulse Strobe

cmis |cmi4 [omis [omiz | cmit [omio [cme | cms
EDGE X X x | x | x

CM7 | CMé | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 1 0 X X X X X

Mode |, shown in Figure 1-17i, is identical to Mode G, except that
counting will not begin until a Gate edge is applied to an armed
counter. The counter must be armed before application of the
triggering Gate edge; Gate edges applied to a disarmed counter
are disregarded. An armed counter will start counting on the first
source edge after the triggering Gate edge. Counting will then
proceed in the same manner as in Mode G. After the second TC,
the counter will disarm itself. An ARM command and Gate edge
must be issued in this order to restart counting. Note that after
application of a triggering Gate edge, the Gate input will be
disregarded until the second TC. This differs from Mode H, where
the Gate can be modulated throughout the count cycle to stop and
start the counter.

oxre ST,/ \/

Y -\ XXX

e SR) (D 0 S 5 £ €3 € G () (22 () GHES) () & &8 €9 W=

TC / \ / \
OUTPUT
TC TOGGLED
OUTPUT X - X
i \/
ARM
COMMAND
MOS-595
Figure 1-17h. Mode H Waveforms
GATE
COUNT
VALUE
TC
OUTPUT
TC TOGGLED
OUTPUT
WR
ARM
COMMAND MOS-596

Figure 1-17i. Mode | Waveforms

1-16

MODE J
Variable Duty Cycle Rate Generator with No
Hardware Gating

CM15 | CM14 | CM13 | CM12 | CM11 | CM10 | CM9 | CM8
0 0 0 X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 1 1 X X X X X

Mode J, shown in Figure 1-17j, will find the greatest usage in
frequency generation applications with variable duty cycle re-
quirements. Once armed, the counter will count continuously until
it is issued a DISARM command. On the first TC, the counter will
be reloaded from the Hold register. Counting will then proceed
until the second TC at which time the counter will be reloaded
from the Load register. Counting will continue, with the reload
source alternating on each TC, until a DISARM command is
issued to the counter. (The third TC reloads from the Hold regis-
ter, the fourth TC reloads from the Load register, etc.) A variable
duty cycle output can be generated by specifying the TC Toggled
output in the Counter Mode register. The Load and Hold values
then directly control the output duty cycle, with high resolution
available when relatively high count values are used.

MODE K
Variable Duty Cycle Rate Generator with Level Gating

cmis | cmia | cmia | cmi2 | it | omio | cme [cms
LEVEL X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 1 1 X X X X X

Mode K, shown in Figure 1-17k, is identical to Mode J except that
source edges are only counted when the Gate is active. The
counter must be armed for counting to occur. Once armed, the
counter will count all source edges which occur while the Gate is
active and- disregard those source edges which occur while the
Gate is inactive. This permits the Gate to turn the count process
on and off. As with Mode J, the reload source used will alternate
on each TC, starting with the Hold register on the first TC after any
ARM command. When the TC Toggled output is used, this mode
allows the Gate to modulate the duty cycle of the output
waveform. It can affect both the high and low portions of the
output waveform.

28 D KD G (5 €D &5 £9 6 (5) €5 &5 &5 () (=

TC / \ / \
ouTPUT e (&
7 124
G L
TC TOGGLED i 7
OUTPUT T {(

27

MOS-597

Figure 1-17j. Mode J Waveforms

QR \/ W

o) (D) () () (2 GEEEED G5 & G €5 () (8 D) GEID CB) & & € C) G

OUTPIJ?’ / \ " y / \ 4 f m
T ouTeur) G l X ' A

MOs-598

Figure 1-17k. Mode K Waveforms

MODE L
Hardware-Triggered Delayed Pulse One-Shot

cMmis | cmi14 | oma [omi2 [et | cmio [cme [cms
EDGE X | x | x | x | x

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
0 1 1 X X X X X

Mode L, shown in Figure 1-171, is similar to Mode J except that
counting will not begin until a Gate edge is applied to an armed
counter. The counter must be armed before application of the
triggering Gate edge; Gate edges applied to a disarmed counter
are disregarded. The counter will start counting source edges
after the triggering Gate edge and counting will proceed until the
second TC. Note that after application of a triggering Gate edge,
the Gate input will be disregarded for the remainder of the count
cycle. This differs from Mode K, where the gate can be modulated
throughout the count cycle to stop and start the counter. On the
first TC after application of the triggering Gate edge, the counter
will be reloaded from the Hold register. On the second TC, the
counter will be reloaded from the Load register and counting will
stop until a new gate edge is issued to the counter. Note that
unlike Mode K, new Gate edges are required after every second
TC to continue counting.

MODE N
Software-Triggered Strobe with Level Gating and
Hardware Retriggering

CM15]CM14!CM13 cMmi2 | cmi1| cmio | cme | cms
LEVEL X x | x | x | x

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
1 0 0 X X X X X

Mode N, shown in Figure 1-17n, provides a software-triggered
strobe with level gating that is also hardware retriggerable. The
counter must first be issued an ARM command before counting
can occur. Once armed, the counter will count all source edges
which occur while the gate is active and disregard those source
edges which occur while the Gate is inactive. This permits the
Gate to turn the count process on and off. After the issuance of an
ARM command and the application of an active Gate, the counter
will count to TC. Upon reaching TC, the counter will reload from
the Load register and automatically disarm itself, inhibiting further
counting. Counting will resume upon the issuance of a new ARM
command. All active-going Gate edges issued to an armed
counter will cause a retrigger operation. Upon application of the
Gate edge, the counter contents will be saved in the Hold register.
On the first qualified source edge after application of the retrig-
gering gate edge the contents of the Load register will be transfer-
red into the counter. Counting will resume on the second qualified
source edge after the retriggering Gate edge. Qualified source
edges are active-going edges which occur while the Gate is active.

e AVAVAVAVAVAVAVAVAVAVAVAVAY
eure XUV _/ XX KX KRG ALY

COUNT 5

3(::)(: X X XX::X = X X X
TC

ouTPUT ”

/\

TC TOGGLED
OUTPUT

A, A

MOS-599

Figure 1-171. Mode L Waveforms

{4

3

GATE ’

COUNT
VALUE

TC / \
OuUTPUT
i {f
TC TOGGLED " X
OUTPUT (C [
27 7
{f 1
R \/
ARM
COMMAND
MOS-600
Figure 1-17n. Mode N Waveforms
MODE O counting. The counter must be armed before application of the

Software-Triggered Strobe with Edge Gating and
Hardware Retriggering

CM15 ICM14 [CM13 CM12 | CM11 | CM10 | CM9 | CM8
EDGE X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
1 0 0 X X X X X

Mode O, shown in Figure 1-170, is similar to Mode N, except that
counting will not begin until an active-going Gate edge is applied
to an armed counter and the Gate level is not used to modulate

triggering Gate edge; Gate edges applied to a disarmed counter
are disregarded. Irrespective of the Gate level, the counter will
count all source edges after the triggering Gate edge until the first
TC. On the first TC the counter will be reloaded from the Load
register and disarmed. A new ARM command and a new Gate
edge must be applied in that order to initiate a new counting cycle.
Unlike Modes C, F, | and L, which disregard the Gate input once
counting starts, in Mode O the count process will be retriggered
on all active-going Gate edges, including the first Gate edge used
to start the counter. On each retriggering Gate edge, the counter
contents will be transferred into the Hold register. On the first
source edge after the retriggering Gate edge the Load register
contents will be transferred into the counter. Counting will resume
on the second-source edge after a retrigger.

are OO/ ATV /- WAV RN AN OO

COUNT
VALUE

TC
OUTPUT

)00 0 €9 6 &) €3 €8 €

TC TOGGLED
OUTPUT

ARM
COMMAND

MOsS-601

Figure 1-170. Mode O Waveforms

1-19

MODE Q
Rate Generator with Synchronization
(Event Counter with Auto-Read/Reset)

MODE R
Retriggerable One-Shot

CoMi5 | cMmi4 | cm13| cmi2 | cmitt | omio | cme | ove om15 | omi4 | cmia | w2 [omr | cmio | cme | cms

LEVEL X | x | x | x [x EDGE X | x | x | x | x
cM7 | cMe | cms | cma | cm3 | cm2 [oMt [cmo cM7 | cme | cMs | cm4 | cms | cm2 [omi | cmo
1 0 1 X | x | x | x | x 1 0 1 X | x | x | x | x

Mode Q, shown in Figure 1-17q, provides a rate generator with
synchronization or an event counter with auto-read/reset. The
counter must first be issued an ARM command before counting
can occur. Once armed, the counter will count all source edges
which occur while the Gate is active and disregard those edges
which occur while the Gate is inactive. This permits the Gate to
turn the count process on and off. After the issuance of an ARM
command and the application of an active Gate, the counter will
count to TC repetitively. On each TC the counter will reload itself
from the Load register. The counter may be retriggered at any
time by presenting an active-going Gate edge to the Gate input.
The retriggering Gate edge will transfer the contents of the
counter into the Hold register. The first qualified source edge after
the retriggering Gate edge will transfer the contents of the Load
register into the Counter. Counting will resume on the second
qualified source edge after the retriggering gate edge. Qualified
source edges are active-going edges which occur while the Gate
is active.

Mode R, shown in Figure 1-17r, is similar to Mode Q, except that
edge gating rather than level gating is used. In other words, rather
than use the Gate level to qualify which source edges to count,
Gate edges are used to start the counting operation. The counter
must be armed before application of the triggering Gate edge;
Gate edges applied to a disarmed counter are disregarded. After
application of a Gate edge, an armed counter will count all source
edges until TC, irrespective of the Gate level. On the first TC the
counter will be reloaded from the Load register and stopped.
Subsequent counting will not occur until a new. Gate edge is
applied. All Gate edges applied to the counter, including the first
used to trigger counting, initiate a retrigger operation. Upon appli-
cation of a Gate edge, the counter contents are saved in the Hold
register. On the first source edge after the retriggering Gate edge,
the Load register contents will be transferred into the counter.
Counting will resume on the second source edge after the retrig-
gering Gate edge.

{

i

28
GATE

/

U

COUNT

o F e
TC
OuUTPUT / \ "

P 6D €9 (') 0 G 6 0 O 0 &0 69 € €3 C3

/ N\

I’y

{¢

TC TOGGLED I

OUTPUT

X

A

o

MOS-602

Figure 1-17q. Mode Q Waveforms

COUNT
VALUE

TC
OUTPUT

[\

TC TOGGLED
OUTPUT

X

MOS-603

Figure 1-17r. Mode R Waveforms

1-20

MODE S

CM15 | CM14 | CM13 | CM12 | CM11 | CM10 | CM9 | CM8

MODE V
Frequency-Shift Keying

CM15 | CM14 | CM13 | CM12 | CM11 | CM10 | CM9 | CM8

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO

0 0 0 X X X X X

1 1 0 X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO

In this mode, the reload source for LOAD commands (irrespective
of whether the counter is armed or disarmed) and for TC-initiated
reloads is determined by the Gate input. The Gate inputinMode S
is used only to select the reload source, not to start or modulate
counting. When the Gate is Low, the Load register is used; when
the Gate is High, the Hold register is used. Note the Low-Load,
High-Hold mnemonic convention. Once armed, the counter will
count to TC twice and then disarm itself. On each TC the counter
will be reloaded from the reload source selected by the Gate.
Following the second TC, an ARM command is required to start a
new counting cycle. Mode S is shown in Figure 1-17s.

1 1 1 X X X X X

Mode V, shown in Figure 1-17v, provides frequency-shift keying
modulation capability. Gate operation in this mode is identical to
that in Mode S..If the Gate is Low, a LOAD command or a
TC-induced reload will reload the counter from the Load register.
If the Gate is High, LOADs and reloads will occur from the Hold
register. The polarity of the Gate only selects the reload source; it
does not start or modulate counting. Once armed, the counter will
count repetitively to TC. On each TC the counter will reload itself
from the register determined by the polarity of the Gate. Counting
will continue in this manner untila DISARM command is issued to
the counter. Frequency shift keying may be obtained by specify-
ing a TC Toggled output mode in the Counter Mode register. The
switching of frequencies is achieved by modulating the Gate.

T AVAVAVAVAVAVaVaVaVaVaVaVaX

4
e _/‘“"'
COMMAND

TC
OUTPUT

o TXRXATXTRAXRRANARY EXCARRAARRR) _ATRAAX
ST () € €D € 0 (2 €. &9 € e

TC TOGGLED
OUTPUT

) G X

MOsS-604

Figure 1-17s. Mode S Waveforms

care YRR NOCRXRCNOY OO0, AKX
D60 0 35 €3 60 € () 6 0 €8 0 O

/\

TC TOGGLED
OUTPUT

X X

MOS-605

Figure 1-17v. Mode V Waveforms

1-21

COUNT
VALUE

X

TC
OUTPUT

O () 9 0D €3 G G &5 &5 G

—
TC TOGGLED X
UTPUT , .
1 1 —
HOLD s + ¢
REGISTER x L L X N N X L
— ¢ s
Figure 1-17x. Mode X Waveforms
MODE X After power-on reset or a Master Reset command, the Counter

Hardware Save (available in Am9513A only)

CM15| CM14 | CM13 |CM12 |CM11| CM10 | CM9 | CM8
Edge X X X X X

CM7 | CM6 | CM5 | CM4 | CM3 | CM2 | CM1 | CMO
1 1 1 X X X X X

Mode X, shown in Figure 1-17x, provides a hardware sampling of
the counter contents without interrupting the count. A Load and
Arm command or a Load command followed by an Arm command
is required to initialize the counter. Once armed, a Gate edge
starts the counting operation; gate edges applied to a disarmed
counter are disregarded. After application of the Triggering Gate
edge the counter will count all qualified source edges until the first
TC, irrespective of the gate level. All gate edges applied during
the counting sequence will store the current count in the Hold
register, but they will not interrupt the counting sequence. On
each TC, the counter will be reloaded from the Load register and
stopped. Subsequent counting requires a new triggering Gate
edge; counting resumes on the first source edge following the
triggering Gate edge.

Note: Mode X is only available in the Am9513‘A’ devices.

COUNTER MODE CONTROL OPTIONS

Each Counter Logic Group includes a 16-bit Counter Mode (CM)
register used to control all of the individual options available with
its associated general counter. These options include output
configuration, count control, count source and gating control.
Figure 1-18 shows the bit assignments for the Counter Mode
registers. This section describes the control options in detail.
Note that generally each counter is independently configured and
does not depend on information outside its Counter Logic Group.
The Counter Mode register should be loaded only when the
counter is Disarmed. Attempts to load the Counter Mode register
when the counter is armed may result in erratic counter operation.

1-22

Mode registers are initialized to a preset condition. The value
entered is 0BOO hex and results in the following control
configuration:

Output low impedance to ground
Count down

Count binary

Count once

Load register selected

No retriggering

F1 input source selected
Positive-true input polarity

No gating

Output Control

Counter mode bits CMO0 through CM2 specify the output control
configuration. Figure 1-19 shows a schematic representation of
the output control logic. The OUT pin may be off (a high imped-
ance state), or it may be inactive with a low impedance to
ground. The three remaining valid combinations represent the
active High, active Low or TC Toggle output waveforms.

One output form available is called Terminal Count (TC) and
represents the period in time that the counter reaches an equiva-
lent value of zero. TC will occur on the next count when the
counter is at 0001 for down counting, at 9999 (BCD) for BCD up
counting or at FFFF (hex) for binary up counting. Figure 1-20
shows a Terminal Count pulse and an example context that
generated it. The TC width is determined by the period of the
counting source. Regardless of any gating input or whether the
counter is Armed or Disarmed, the terminal count will go active for
only one clock cycle. Figure 1-20 assumes active-high source
polarity, counter armed, counter decrementing and an external
reload value of K.

The counter will always be loaded from an external location when
TC occurs; the user can choose the source location and the
value. If a non-zero value is picked, the counter, will never really
attain a zero state and TC will indicate the counter staté that
would have been zero had no parallel transfer occurred.

Count Source Selection Count Control
0000 = TCN-1 0 = Disable Special Gate
0001 = SRC1 1 = Enable Special Gate
0010 = SRC2 0 = Reload from Load
0011 = SRC3 1 = Reload from Load or Hold
0100 = SRC4 Except in Mode X Which
0101 = SRC5 Reloads Only from Load
0110 = GATE1
0111 = GATE2 0 = CountOne
1000 = GATE3 1 = Count Repetitively
1001 = GATE4 0 = Binary Count
1010 = GATES 1 = BCD Count
1011 = F1 0 = Count Down
1100 = F2 1 = CountUp
1101 = F3
1110 = F4
1111 = F5

ICM15 |CM14 I CM13 I CM12 ICM11 ICM10 I CM9 l [o1%:] I CMm7 | CMé I CMs I Cma I CM3 l CMm2 I CMm1 I CMo]

——— ~———

Source Edge
0 = Counton Rising Edge
= Counton Falling Edge

Gating Control Output Control
000 = No Gating 000 = Inactive, Output Low
001 = Active High Level TCN-1 001 = Active High Terminal Count Pulse
010 = Active High Level GATEN+1 010 = TC Toggled
011 = Active High Level GATEN -1 011 = lllegal
100 = Active High Level GATE N 100 = lInactive, Output High Impedance
101 = Active Low Level GATEN 101 = Active Low Terminal Count Pulse
110 = Active High Edge GATE N 110 = lllegal
111 = Active Low Edge GATEN 111 = lllegal

Note: See Figure 1-17 for restrictions on Count Control and Gating Control bit combinations.

MOS-176

Figure 1-18. Counter Mode Register Bit Assignments

b SET a l_ ______ _]

| I TO STATUS
| | REGISTER
COUNTER Ll 2:4 | 2:1 | .\ ouTPUT
TC OUTPUT _ —— MUX | MUX ‘
—————bcP ol | |
CLEAR I | OUTPUT LOW
T | SELECT | CONTROL
TC/TC TOGGLE COMPARATOR l POLARITY
NTROL OUTPUT OFF
l SELECT I__°EP_EI e _,I co! HIGH Z CONTROL
COUNTERS 1 AND 2 ONLY

TC CONNECTION
TO N + 1 COUNTER

MOS-502A

Figure 1-19. Output Control Logic
1-23

COUNT
VALUE

TC OUTPUT

D D D 5 GO €3 S5 €5 CIH €5 &5 €5 KX

/ N\

TC TOGGLED
OUTPUT

Ins

—

MOS-503

Figure 1-20. Counter Output Waveforms

The other output form, TC Toggled, uses the trailing edge of TC to
toggle a flip-flop to generate an output level instead of a pulse.
The toggle output is 1/2 the frequency of TC. The TC Toggled
output will frequently be used to generate variable duty-cycle
square waves in Operating Modes G through K.

In Mode L the TC Toggled output can be used to generate a
one-shot function, with the delay to the start of the output pulse
and the width of the output pulse separately programmable. With
selection of the minimum delay to the start of the pulse, the output
will toggle on the source pulse following application of the trig-
gering Gate edge.

Note that the TC Toggled output form contains no implication
about whether the output is active-high or active-low. Unlike the
TC output, which generates a transient pulse which can clearly be
active-high or active-low, the TC Toggled output waveform only
flips the state of the output on-each TC. The sole criteria of
whether the TC Toggled output is active-high or active-low
is the level of the output at the start of the count cycle. This
can be controlled by the Set and Clear Output commands. (See
Figure 1-21.)

TC (Terminal Count)

On each Terminal Count (TC), the counter will reload itself from
the Load or Hold register. TC is defined as that period of time
when the counter contents would have been zero had no reload
occurred. Some special conditions apply to counter operation
immediately before and during TC.

1. In the clock cycle before TC, an internal signal is generated
that commits the counter to go to TC on the next count, and
retriggering by a hardware Gate edge (Modes N, O, Q and R)
or a software LOAD or LOAD-and-ARM command will not
extend the time to TC. Note that the “next count” driving the
counter to TC can be caused by the application of a count
source edge (in level gating modes, the edge must occur while
the gate is active, or it will be disregarded), by the application
of a LOAD or LOAD-and-ARM command (see 2 below) or by
the application of a STEP command.

. If a LOAD or LOAD-and-ARM command is executed during
the cycle preceding TC, the counter willimmediately goto TC.
If these commands are issued during TC, the TC state will
immediately terminate.

. When TC is active, the counter will always count the next
source edge issued to it, even if it is disarmed or gated off
during TC. This means that TC will never be active for longer
than one count period and it may, in fact, be shorter if a STEP

1-24

command or a LOAD or LOAD-and-ARM command is applied
during TC (see item 2 above). This also means that a counter
that is disarmed or stopped on TC is actually disarmed/
stopped immediately following TC.

This may cause count sequences different from what a user might
expect. Since the counter is always reloaded at the start of TC,
and since it always counts at the end of TC, the counter contents
following TC will differ by one from the reloaded value, irrespec-
tive of the operating mode used.

If the reloaded value was 0001 for down counting, 9999 (BCD) for
BCD up counting or FFFF (hex) for binary up counting, the count
atthe end of TC will drive the counter into TC again regardless of
whether the counter is gated off or disarmed. As long as these
values are reloaded, the TC output will stay active. If a TC Tog-
gled output is selected, it will toggle on each count. Execution of a
LOAD, LOAD-and-ARM or STEP command with these counter
contents will act the same as application of a source puise,
causing TC to remain active and a TC Toggled output to toggle.

Count Control

Counter Mode bits CM3 through CM7 specify the various options
available for direct control of the counting process. CM3 and CM4
operate independently of the others and control up/down and
BCD/binary counting. They may be combined freely with other
control bits to form many types of counting configurations. The
other three bits and the Gating Control field interact in complex
ways. Bit CM5 controls the repetition of the count process. When
CM5 = 1, counting will proceed in the specified mode until the
counter is disarmed. When CM5 = 0, the count process will
proceed only until one full cycle of operation occurs. This may
occur after one or two TC events. The counter is then disarmed
automatically. The single or double TC requirement will depend
on the state of other control bits. Note that even if the counter is
automatically disarmed upon a TC, it always counts the count
source edge which generates the trailing TC edge.

When TC occurs, the counter is always reloaded with a value
from either the Load register or the Hold register. Bit CM6
specifies the source options for reloading the counter. When CM6
= 0, the contents of the Load register will be transferred into the
counter at every occurrence of TC. When CM6 = 1, the counter
reload location will be either the Load or Hold Register. The
reload location in this case may be controlled externally by using
aGATE pin (Modes S and V) or may alternate on each TC (Modes
G through L). With alternating sources and with the TC Tog-
gled output selected, the duty cycle of the output waveform is

controlled by the relative Load and Hold values and very fine
resolution of duty cycle ratios may be achieved.

Bit CM7 controls the special gating functions that allow retrigger-
ing and the selection of Load or Hold sources for counter reload-
ing. The use and definition of CM7 will depend on the status of the
Gating Control field and bits CM5 and CM6.

Hardware Retriggering

Whenever hardware retriggering is enabled (Modes N, O, Q and
R) all active going Gate edges initiate retrigger operations. On
application of the Gate edge, the counter contents will be trans-
ferred to the Hold register. On the first qualified source edge after
application of the retriggering Gate edge, the Load register con-
tents will be transferred into the counter. (Qualified source edges
are edges which occur while the counter is gated on and Armed.)

This means that if level gating is used, the edge occurring on
active-going gate transitions will initiate a retrigger. Similarly,
when edge gating is enabled, an edge used to start the counter
will also initiate a retrigger. The first count source edge applied
after the Gate edge will not increment/decrement the counter but
retrigger it.

If a Load, Load and Arm, or Step Command occur between the
retriggering Gate edge and the first qualified source edge, it will
be interpreted as a source edge and transfer the Load register
contents into the counter. Thereafter, the counter will count all
qualified source edges.

When some form of Gating is specified, CM7 controls hardware
retriggering. In this case, when CM7 = 0 hardware retriggering
does not occur; when CM7 = 1 the counter is retriggered any time
an active-going Gate edge occurs. Retriggering causes the
counter value to be saved in the Hold register and the Load
register contents to be transferred into the counter.

When No Gating is specified, the definition of CM7 changes. In
this case, when CM7 = 0 the Gate input has no effect on the
counting; when CM7 = 1 the Gate input specifies the source
(selecting either the Load or Hold register) used to reload the
counter when TC occurs. Figure 1-16 shows the various available
control combinations for these interrelated bits.

Count Source Selection

Counter Mode bits CM8 through CM12 specify the source used as
input to the counter and the active edge that is counted. Bit CM12
controls the polarity for all the sources; logic zero counts rising
edges and logic one counts falling edges. Bits CM8 through CM11
select 1 of 16 counting sources to route to the counter input. Five
of the available inputs are internal frequencies derived from the
internal oscillator (see Figure 1-15 for frequency assignments).
Ten of the available inputs are interface pins; five are labeled
SRC and five are labeled GATE.

The 16th available input is the TC output from the adjacent
lower-numbered counter. (The Counter 5 TC wraps around to the
Counter 1 input.) This option allows internal concatenating that
permits very long counts to be accumulated. Since all five count-
ers may be concatenated, it is possible to configure a counter that
is 80-bits long on one Am9513 chip. When TCN—1 is the source,
the count ripples between the connected counters. External con-
nections can also be made, and can use the toggle bit for even
longer counts. This is easily accomplished by selecting a TC
Toggled output mode and wiring OUTN to one of the SRC inputs.

Gating Control

Counter Mode bits CM15, CM14, CM13 specify the hardware
gating options. When “no gating” is selected (000) the counter

1-25

will proceed unconditionally as long as it is armed. For any other
gating mode, the count process is conditioned by the specified
gating configuration.

Foracode of 100 in this field, counting can proceed only when the
pin labeled GATEN associated with Counter N is at a logic high
level. When it goes low, counting is simply suspended until the
Gate goes high again. A code of 101 performs the same function
with an opposite active polarity. Codes 010 and 011 offer the same
function as 100, but specify alternate input pins as Gating
Sources. This allows any of three interface pins to be used as
gates for a given counter. On Counter 4, for example, pin 34, pin
35 or pin 36 may be used to perform the gating function. This also
allows a single Gate pin to simultaneously control up to three
counters. Counters 1 and 5 are considered adjacent when using
TCN — 1(001), Gate N + 1 (010) and Gate N — 1 (011) controls.

For codes of 110 or 111 in this field, counting proceeds after the
specified active Gate edge until one or two TC events occur.
Within this interval the Gate input is ignored, except for the
retriggering option. When repetition is selected, a cycle will be
repeated as soon as another Gate edge occurs. With repetition
selected, any Gate edge applied after TC goes active will start a
new count cycle. Edge gating is useful when implementing a
digital single-shot since the gate can serve as a convenient firing
trigger.

A 001 code in this field selects the TC output from the adjacent
lower-numbered counter as the gate. Thus, one counter may be
configured to generate a counting “window” for another counter.

COMMAND DESCRIPTIONS

The command set for the Am9513 allows the host processor
to customize and manage the operating modes and features
for particular applications, to initialize and update both the inter-
nal data and control information, and to manipulate operating
bits during operation. Commands are entered directly into the
8-bit Command register by writing into the Control port (see
Figure 1-8).

All available commands are described in the following text. Figure
1-21 summarizes the command codes and includes a brief de-
scription of each function. Figure 1-22 shows all the unused code
combinations; unused codes should not be entered into the
Command register since undefined activities may occur.

Six of the command types are used for direct software control of
the counting process and they each contain a 5-bit S field. In a
linear-select fashion, each bit in the S field corresponds to one of
the five general counters (S1 = Counter 1, S2 = Counter 2, etc.).
When an S bit is a one, the specified operation is performed on
the counter so designated; when an S bit is a zero, no operation
occurs for the corresponding counter. This type of command
format has three basic advantages. It saves host software by
allowing any combination of counters to be acted on by a single
command. It allows simultaneous action on multiple counters
where synchronization of commands is important. It allows
counter-specific service routines to control individual counters
without needing to be aware of the operating context of other
counters.

Three of the commands use a 3-bit binary code (N4, N2, N1) to
identify the affected counter (a 001 programs counter 1, etc.).
Unlike the previously mentioned commands, these commands
allow you to program only one counter at a time.

Command Code

Cc7 C6 C5 c4 c3 Cc2 C1 co Command Description

0 0 0 E2 E1 G4 G2 G1 Load Data Pointer register with contents of E and G fields.

(G # 000, G # 110)

0 0 1 S5 S4 S3 S2 S1 Arm counting for all selected counters

0 1 0 S5 S4 S3 S2 S1 Load contents of specified source into all selected counters
0 1 1 S5 S4 S3 S2 St Load and Arm all selected counters*

1 0 0 S5 S4 S3 S2 St Disarm and Save all selected counters

1 0 1 S5 S4 S3 S2 S1 Save all selected counters in Hold register

1 1 0 S5 S4 S3 S2 S1 Disarm all selected counters

1 1 1 0 1 N4 N2 N1 Set Toggle out (High) for counter N (001 < N < 101)
1 1 1 0 0 N4 N2 N1 Clear Toggle out (Low) for counter N (001 < N < 101)
1 1 1 1 0 N4 N2 N1 Step counter N (001 < N < 101)

1 1 1 0 1 0 0 0 Set MM14 (Disable Data Pointer Sequencing)

1 1 1 0 1 1 1 0 Set MM12 (Gate off FOUT)

1 1 1 0 1 1 1 1 Set MM13 (Enter 16-bit bus mode)

1 1 1 0 0 0 0 0 Clear MM14 (Enable Data Pointer Sequencing)

1 1 1 0 0 1 1 0 Clear MM12 (Gate on FOUT)

1 1 1 0 0 1 1 1 Clear MM13 (Enter 8-bit bus mode)

1 1 1 1 1 0 0 0 Enable Prefetch for Write operations (Am9513‘A’ only)

1 1 1 1 1 0 0 1 Disable Prefetch for Write operations (Am9513‘A’ only)

1 1 1 1 1 1 1 1 Master reset

*Not to be used for asynchronous operations.

c7 | ce | c5 | ca|c3|c2|ct|co

1 1 1 1 0 o | o o

1 1 1 1 0 1 1 0

1 1 1 1 0 1 1 1

o | o 0 X | x 1 1 0

0 0 0 X | x| o] o 0
1 1 1 1 1 x | x| x

*Unused except when XXX = 111, 001 or 000.
Figure 1-22. Am9513 Unused Command Codes

Arm Counters

Coding: C7 C6 C5 C4 C3 C2 Ct CoO

0 0 1 S5 S4 S3 S2 St

Description: Any combination of counters, as specified by the S
field, will be enabled for counting. A counter must be armed
before counting can commence. Once armed, the counting pro-
cess may be further enabled or disabled using the hardware
gating facilities. This command can only arm or do nothing for a
given counter; a zero in the S field does not disarm the counter.

ARM and DISARM commands can be used to gate counter
operation on and off under software control. DISARM commands
entered while a counter is in the TC state will not take effect until
the counter leaves TC. This ensures that the counter never
latches up in a TC state. (The counter may leave the TC state
because of application of a count source edge; execution of a
LOAD or LOAD-and-ARM command; or execution of a STEP
command.)

Figure 1-21. Am9513 Command Summary

In modes which alternate reload sources (Modes G-L), the
ARMing operation is used as a reset for the logic which deter-
mines which reload source to use on the upcoming TC. Following
each ARM or LOAD-and-ARM command, a counter in one of
these modes will reload from the Hold register on the first TC and
alternate reload sources thereafter (reload from the Load register
on the second TC, the Hold register on the third, etc.).

Load Counters

C7 C6 C5 C4 C3 C2 C1 cCo
0 1 0 S5 S4 s3 82 &t

Coding:

Description: Any combination of counters, as specified in the S
field, will be loaded with previously entered values. The source of
information for each counter will be either the associated Load
register or the associated Hold register, as determined by the
operating configuration in the Mode register. The Load/Hold
contents are not changed. This command will cause a transfer
independent of any current operating configuration for the
counter. It will often be used as a software retrigger, or as counter
initialization prior to active hardware gating.

If a LOAD or LOAD-and-ARM command is executed during the
cycle preceding TC, the counter will go immediately to TC. This
occurs because the LOAD operation is performed by generating
a pseudo-count pulse, internal to the Am9513, and the Am9513 is
expecting to go into TC on the next count puise. The reload
source used to reload the counter will be the same as that which
would have been used if the TC were generated by a source
edge rather than by the LOAD operation.

Execution of a LOAD or- LOAD-and-ARM command while a
counter is in TC will cause the TC to end. For Armed counters in

1-26

all modes except S or V, the LOAD source used will be that to be
used for the upcoming TC. (The LOADing operation will not alter
the selection of reload source for the upcoming TC.) For Dis-
armed counters in modes except S or V, the reload sources used
willbe the LOAD register. For modes S or V, the reload source will
be selected by the GATE input, regardless of whether the counter
is Armed or Disarmed.

Special considerations apply when modes with alternating re-
load sources are used (Modes G-L). If a LOAD command drives
the counter to TC in these modes, the reload source for the next
TC will be from the opposite reload location. In other words, the
LOAD-generated TC will cause the reload sources to alternate
just as a TC generated by a source edge would. Note that if a
second LOAD command is issued during the LOAD-generated
TC (or during any other TC, for that matter) the second LOAD
command will terminate the TC and cause a reload from the
source designated for use with the next TC. The second LOAD
will not alter the reload source for the next TC since the second
LOAD does not generate a TC; reload sources alternate on TCs
only, not on LOAD commands.

Load and Arm Counters*

c7
0

Cé Cs5 C4
1 1 S5

Coding: C3 C2 cCi

S4 83 82

Co
S1

Description: Any combination of counters, as specified in the S
field, will be first loaded and then armed. This command is
equivalent to issuing a LOAD command and then an ARM
command.

A LOAD-and-ARM command which drives a counter to TC gen-
erates the same sequence of operations as execution of a LOAD
command and then an ARM command. In modes which disarm
on TC (Modes A-C and N-O, and Modes G-l and S if the current
TC is the second in the cycle) the ARM part of the LOAD-and-
ARM command will re-enable counting for another cycle. In
modes which alternate reload sources (Modes G-L) the ARMing
operating will cause the next TC to reload from the HOLD regis-
ter, irrespective of which reload source the current TC used.

*This command should not be used during asynchronous operations.

Disarm Counters

Cc7
1

Cé6 C5 C4 C3 C2 Ci Co
1 0 S5 S84 sS3 S2 St

Description: Any combination of counters, as specified by the S
field, will be disabled from counting. A disarmed counter will
cease all counting independent of other control conditions. The
only exception to this is that a counter in the TC state will always
count once, in order to leave TC, before DISARMing. This count
may be generated by a source edge, by a LOAD or LOAD-and-
ARM command (the LOAD-and-ARM command will negate the
DISARM command) or by a STEP command. A disarmed
counter may be updated using the LOAD command and may be
read using the SAVE command. A count process may be re-
sumed using an ARM command. See the ARM command de-
scription for further details.

Save Counters

Coding:

C7 C6 C5 C4 C3 C2
1 0 1 85 S4 S3

C1
S2

Co
S1

Coding:

Description: Any combination of counters, as specified by the S
field, will have their contents transferred into their associated
Hold register. The transfer takes place without interfering with any

counting that may be underway. This command will overwrite any
previous Hold register contents. The SAVE command is de-
signed to allow an accumulated count to be preserved so that it
can be read by the host CPU at some later time.

Disarm and Save Counters

C3 Cc2 cCi
S4 S3 S2

C7 Cé6 C5 C4
1 0 0 S5

Coding: Cco

S1

Description: Any combination of counters, as specified by the S
field, will be disarmed and the contents of the counter will be
transferred into the associated Hold registers. This command is
identical to issuing a DISARM command followed by a SAVE
command.

Set TC Toggle Output

C7 Cé Cs
1 1 1

C4
0

C3 C2 C1 cCo
1 N4 N2 N1

Coding:

(001 < N =< 101)

Description: The initial output level for TC Toggle mode is set
(High) for counter N selected by N4, N2, N1 = 001 (Counter 1)
thru 101 (Counter 5) respectively. This command conditions the
TC Toggle flip-flop (see Figure 1-19), but does not appear at the
counter output unless TC Toggle mode (CM2, CM1, CMO = 010)
is selected.

Clear TC Toggle Output

C7 C6 C5 C4
1 1 1 0

C3 C2
0 N4

C1 Co
N2 N1

Coding:

(001 < N < 101)

Description: The initial output level for TC Toggle mode is
Cleared (Low) for counter N selected by N4, N2, N1 = 001
(Counter 1) thru 101 (Counter 5) respectively. This command
conditions the TC Toggle flip-flop (see Figure 1-19), but does not
appear at the counter output unless TC Toggle mode (CM2, CM1,
CMO = 010) is selected.

Step Counter

C7 Cé6 C5 C4
1 1 1 1

Coding: C3 cC2

0

C1 Co
N4 N2 N1

(001 < N =< 101)

Description: Counter N is incremented or decremented by one,
depending on its operating configuration. If the Counter Mode
register associated with the selected counter has its CM3 bit
cleared to zero, this command will cause the counter to decre-
ment by one. If CM3 is set to a logic high, this command will
increment the counter by one. The STEP command will take
effect even on a disarmed counter.

Load Data Pointer Register

C7 Cé6 C5 C4 C3 C2 CcCi
0 0 0 E2 Eit
(G4, G2, G1 # 000, # 110)

Description: Bits in the E and-G fields will be transferred into the
corresponding Element and Group fields of the Data Pointer
register as shown in Figure 1-9. The Byte Pointer bit in the Data
Pointer register is set. Transfers into the Data Pointer only

Cco
G4 G2 G1

Coding:

occur for G field values of 001, 010, 011, 100, 101 and 111.
Values of 000 and 110 for G should not be used. See the “Setting
the Data Pointer Register” section of this document for additional
details.

Disable Data Pointer Sequencing

C1
0

C7 C6 C5 C4 C3 C2
1 1 1 0 1 0

co
0

Coding:

Description: This command sets Master Mode bit 14 without
affecting other bits in the Master Mode register. MM14 controls
the automatic sequencing of the Data Pointer register. Disabling
the sequencing allows repetitive host processor access to a given
internal location without repetitive updating of the Data Pointer.
MM14 may also be controlled by loading a full word into the
Master Mode register.

Enable Data Pointer Sequencing

Cc7
1

C6 C5 C4 C3 C2 Ct
1 1 0 0 0 0

co
0

Coding:

Description: This command clears Master Mode bit 14 without
affecting other bits in the Master Mode register. MM14 controls
the automatic sequencing of the Data Pointer register. Enabling
the sequencing allows sequential host processor access to sev-
eral internal locations without repetitive updating of the Data
Pointer. MM14 may also be controlled by loading a full word into
the Master Mode register. See the “Data Pointer Register” sec-
tion of this document for additional information on Data Pointer
sequencing.

Enable 16-Bit Data Bus

C7 C6 C5 C4 C3 Cz2 Ct
1 1 1 0 1 1 1

Cco
1

Coding:

Description: This command sets Master Mode bit 13 without
affecting other bits in the Master Mode register. MM13 controls
the multiplexer in the data bus buffer. When MM13 is set, no
multiplexing takes place and all 16 external data bus lines are
used to transfer information into and out of
also be controlled by loading the full Master Mode register in
paraliel.

Enable 8-Bit Data Bus

tha OT AAA4AD mrny
i€ S v. iviivi 1 iTiay

C7 C6 C5 C4 C3 C2 O
1 1 1 0 0 1 1

Co
1

Coding:

Description: This command clears Master Mode bit 13 without
affecting other bits in the Master Mode register. MM13 controls
the multiplexer in the data bus buffer. When MM13 is cleared, the
multiplexer is enabled and 16-bit internal information is trans-
ferred eight bits at a time to the eight low-order external data bus
lines. MM13 may also be controlled by loading the full Master
Mode register in parallel.

Gate Off FOUT

C7 C6 C5 C4 C3 C2 C1
1 1 1 0 1 1 1

Co
0

Coding:

Description: This command sets Master Mode bit 12 without
affecting other bits in the Master Mode register. MM12 controls
the output state of the FOUT signal. When gated off, the FOUT
line will exhibit a low impedance to ground. MM12 may also be
controlled by loading the full Master Mode register in parallel.

1-28

Gate On FOUT

Co
0

C7 C6 C5 C4 C3 C2 Ct
1 1 1 0 0 1 1

Coding:

Description: This command clears Master Mode bit 12 without
affecting other bits in the Master Mode register. MM12 controls
the output status of the FOUT signal. When MM12 is cleared,
FOUT will become active and will drive out the selected and
divided FOUT signal. MM12 may also be controlled by loading the
full Master Mode register in parallel. When FOUT is gated on or
off, a transient pulse may be generated on the FOUT signal.

Disable Prefetch for Write Operations

C7 Cé
1 1

C5 C4 C3 cCc2 C1
1 1 1 0 (o]

co
1

Coding:

Description: This command disables the prefetch circuitry during
Write operations (it does not affect Read operations). This re-
duces the write recovery time and allows the user to use block
move instructions for initialization of the Am9513 registers. Once
prefetch is disabled for writing, an Enable Prefetch for Write or a
Reset command is necessary to re-enable the prefetch circuitry
for writing. Note: This command is only available in Am9513‘A’
devices; it is an illegal command in the “non-A Am9513” device.

Enable Prefetch for Write Operations

C7 C6 C5 C4 C3 C2
1 1 1 1 1 0

C1
0

Co
0

Coding:

Description: This command re-enables the prefetch circuitry for
Write operations. It is used only to terminate the Disable Pre-
fetch Command. Note: This command is only available in
Am9513‘A’ devices; it is an illegal command in the “non-A
Am9513” device.

Master Reset

co
1

C7 C6 C5 C4 C3 C2 Ct
1 1 1 1 1 1 1

Coding:

Description: The Master Reset command duplicates the action
of the power-on reset circuitry. It disarms all counters, enters
0000 in the Master Mode, Load and Hold registers and enters
0B00 (hex) in the Counter Mode registers.

Following either a power-up or software reset, the LOAD com-
mand should be applied to all the counters to clear any that may
be in a TC state. The Data Pointer register should also be setto a
legal value, since reset does not initialize it. A complete reset
operation is given in the following.

1. Using the procedure given in the “Command Initiation” sec-
tion of this document, enter the FF (hex) command to perform
a software reset.

. Using the “Command Initiation” procedure, enter the LOAD
command for all counters, opcode 5F (hex).

. Using the procedure given in the “Setting the Data Pointer
Register” section of this document, set the Data Pointer
to a valid code. The legal Data Pointer codes are given in
Figure 1-10.

The Master Mode, Counter Mode, Load and Hold registers can
now be initialized to the desired values.

Chapter 2
Am9513A /Am9513 Interfacing

Am9513 — CPU INTERFACING

The Am9513 is designed to interface easily to both the
AmB8080A/8085A 8-bit family of CPUs and to the AmZ8000 16-bit
family of CPUs. Master Mode register bit MM13 allows the user to
program the Am9513 data bus for either an 8- or 16-bit width,
allowing the Am9513’s data bus to be tailored to match that of the
host CPU.

Figure 2-1 shows an interface between the Am9513 and an
Am8085A CPU. The Am9513 is configured to appear in the
CPU’s I/O space; connecting the 10/M output of the CPU to the
G2A input of the decoder and tying G1 high will memory-map the
Am9513. In the configuration shown, the Am9513 operates with
an 8-bit data bus. Master Mode register bit MM13 should be 0 and
data bus pins DB13-DB15 should be tied high as shown in the
diagram.

Figure 2-2 shows a suggested connection diagram between the
Am9513 and an AmZ8001* or AmZ8002* CPU. In this diagram
the Am9513 appears in both Regular and Special I/O space, by
virtue of the decoding of status lines ST1-ST3. Status line STO
should be decoded also if it is necessary to separate the Regular
and Special /O spaces. The AmZ8136 is a latched decoder
which stores the address information_on the rising edge of AS,
providing the Am9513 with a stable CS for the duration of the
transfer. The Am25LS158 multiplexer generates RD and WR
from the CPU’'s DS and R/W lines. For maximum data
bandwidth between the CPU and the Am9513, Master Mode re-
gister bit MM13 should be set to 1 to configure the Am9513 for a
16-bit data bus width. This can be accomplished by writing
command opcode FFEF (hex) to the Am9513 following each
reset and power-up.

CLOCK GENERATION

An internal oscillator is provided on the Am9513 for generation of
timing frequencies to drive the source inputs for the five counters
and the source for the FOUT pin. Note that a clock signal is not
required for reads and writes to the Am9513. In applications which

*Z8001 and Z8002 are trademarks of Zilog, Inc.

do not use the internal oscillator, the X2 input should be tied either
High or Low to prevent accumulation of static charge. The X1
output is driven by an inverter contained in the Am9513 and
accordingly, X1 should be left floating to avoid damaging the
inverter's output stage.

Applications using the internal oscillator can drive the X1 and X2
inputs with an RC network, an external non-TTL level
squarewave or a crystal. Figure 2-3 shows the recommended
methods of connecting different frequency sources to the internal
oscillator’s input.

A crystal provides a highly accurate frequency source at moder-
ate cost, and will usually be the preferred method of operation.
The Am9513 is designed to use a crystal in parallel-resonant
fundamental mode operation using the connection diagram
shown in Figure 2-3a. Most series-resonant crystals can also be
used, but the oscillator frequency will be different by up to a few
percent from the series resonant crystal’s rated frequency. Two
ceramic capacitors should be connected between X1 and X2 to
ground to ensure proper crystal loading. (The crystal loading is
the capacitance the crystal should be driving to ensure on-
frequency operation and reliable oscillator startup). Although the
crystal sees the capacitors on X1 and X2 in series, and neglects
the ground connection in the center, the use of two capacitors
stabilizes the bias on the crystal by referencing it to ground and
provides superior performance over the one capacitor equivalent
circuit. Ceramic capacitors are the best type for this application
because of their stability over time and temperature and their
superior high frequency characteristics.

An RC network provides a very low cost frequency source but
may exhibit large frequency variations over recommended power
supply and temperature ranges, negating much of the precision
available in the Am9513’s counters. The RC connection is shown
in Figure 2-3b. Note that although there is an internal resistor
between X1 and X2, because this internal resistance is quite high,
an external resistor should always be used in the RC operating
configurations.

5 RD
WR R
10/M G1 © &
o —
G2A o—
G2B o—
T TO OTHER
= Am25Ls138 [O I/O DEVICES Amg513A/
AmB8085A A C Amgs13
B o— vce
c o—
D15
/1 A9 A10] A11 D14
AB-A15 \ X o138
A8
% c/b
ADO-AD7 < > po-o7
ADDRESS-DATA BUS
TO OTHER DEVICES MOS-606

Figure 2-1. Am9513 — Am8085 Interfacing

AmZ8001/2 Am9513
DS R/W | WR RD
L L L H
RESET L H H L
H L H H
-rt Al A2 H H H H
- __ Am25LS158 _
6s pb—-————aq G -Of RD
RIW s 2 fo o WR
RESET l
CLR
s cp v7lo e I3
lo— Amg513
Amzs001 513 D—o & o—
OR o
Am28002 AmZ8136
o TO OTHER
st an3 | &2 1/0 DEVICES
aia| ® C
D O
A e volo— —— D Q cid
POL CE OF Am74LS74
I_l_l__L J >
/| AD1
ADO-AD15 \l > DO-D15
MOS-607
Figure 2-2. AmZ8001/8002 — Am9513 Interface
a) b) c) o
CONNECTION)
x1 X1 Amg513 x1
Am9513A Am9513
XTAL +5V
canxzﬁg R :i Rint
I x2 x2 1r x
c
= N 18pF
:_[caEPRAMIC]::
- MOS-185A
*Note: The Am9513A oscillator was changed from the Am9513. The capacitor values in previous designs should be changed to the values shown.

Figure 2-3. Driving the X1 and X2 Inputs

The Am9513 internal oscillator can also be driven by an external
signal as shown in Figure 2-3c. The Am9513 Electrical Specifica-
tion should be consulted for the voltage levels required on the X2
input to guarantee proper oscillator operation in this configura-
tion. Most circuits can generate this non-TTL level using a pull-up
resistor and a 74LS04 inverter, or equivalent. In some cases a
pull-up resistor can be used to increase the high level output

voltage of an MOS device, such as on the Am8085A CLK output,
without the need for a bipolar buffer. Care must be taken in this
bufferless circuit to choose a pull-up resistor low enough to meet
the Am9513’s high level voltage needs without choosing a resis-
tor value so low that the Am8085A has to sink excessively large
currents when pulling the CLK signal low.

2-2

REGISTER ACCESS

Information Transfer Protocols

The control signal configurations for all information transfers on
the Am9513 data bus are summarized in Figure 2-4. The interface
control logic assumes these conventions:

1. BD and WR are never active at the same time.
2. RD, WR and C/D are ignored unless CS is Low.

The following discussion provides software oriented examples of
Am9513 register accesses. Software examples are given for an
Am8085 CPU with an 8-bit Am9513 data bus interface and for an
AmZ8002 CPU with a 16-bit Am9513 data bus interface. The
descriptions assume that the Am9513 Control port (CMDPRT) is
located at address 12 (hex) and the Am9513 Data port
(DATAPRT) is located at address 10 (hex). Later sections of this
document present complete software listings for representative
Am9513 applications.

Software Initialization

Figure 2-5 shows a Z8000 Software Initialization Sequence for
the 9513. Itis important to note the “DUMMY” LOAD COUNTER
COMMAND:; this insures proper operation of the part. The 16-bit
mode command is not used for 8-bit CPUs. The sequence then is
to Reset the device; Load all counters; Command 16-bit mode;
set Data Pointer to the Master Mode Register; set Master Mode
Register to desired value; set Data Pointer to counter #1 Mode
Register and initialize counters to desired mode of operation.
Note CS must be high during power-up or the internal reset
circuitry will not function correctly. This will result in part ignoring
all commands issued to it except software reset.

Command Initiation

Commands are issued to the Am9513 by writing the appro-
priate command code to the Am9513 Control Port. Figure 2-6
shows an example of command initiation, in this case opcode

Signal
Configuration Data Bus
CS |C/D|RD|WR Operation
ololol1 Transfer contents of register addressed
by Data Pointer to the data bus.
olol1lo Transfer contents of data bus to data
register addressed by Data Pointer.
ol1lol1 Transfer contents of Status register to
data bus.
ol1l1lo Transfer contents of data bus into
Command register.
X| X |11 No transfer.
X No transfer.
X|X|{o]o llegal Condition.

Figure 2-4. Data Bus Transfers

AD (hex), ‘which saves the contents of Counters 1, 3 and 4 in
their associated Hold registers. In both the Am8080A/8085A
and AmZ8002 coding examples, the command is loaded into
an internal CPU register and output to the appropriate port.
Note that in the AmZ8002 case since a 16-bit data bus inter-
face is assumed the upper byte of data output to the Command
port must be FF (hex).

The procedure for executing a command is as follows:

1. Establish the appropriate command on the DBO-DB?7 lines.
Figure 1-21 lists the command codes. When using the
Am9513 in 16-bit mode, data bus lines DB8-DB15 should be
set high during the write operation. In 8-bit data bus mode,
DB13-DB15 should be set high during the write operation.

ZTHIS X8 A SAMPLE INITIALIZATION SEQUENCE
ZFOR THE AM9G13 COUNTER TIMER

L?“I[)I“I'\T s R1L%

MACROSB000 S Vergion Z.0 /19780
MACZ PULBANLIT SeFylrOrWeD

INIT

0000

0000

0000

0000 MODULE 'INIT' 3
0000

0000 CONST CHDFRT =12
0000 DATAFR
0000

0000 INXTS LD

0004 ouT
0008 LD

00o0c ouT
0010 LD

0014 ouT
0018 LD

001C ouT
0020 LD

004 & ouT
0028 1L FF 0 1 LD

00ac 0012 ouT
0030

0030 ENID .

ZSEND RESET
ZL0OAD ALL COUNTERS
ZCOMMAND 16 EXT MODE
ZFOINT TO MASTER MODE REG

AMAS

SROMODE. SETTING

ZFOINT TO CNTR 1 MODE REG

Figure 2-5. Am9513 Initialization

2-3

0100 ORG 100H
H
H AM?513 FORT ADDRESSES
0012 = CMDFRT EQU 012H
0010 = DATAPRT EQU 010H
; AM?S513 COMMAND INITIATION
5
2100 3EAD MVI A,0AH ;;SAVE CTRS. 1 3 & 4
0102 D312 ouT CMDFPRT
§
¥
*AGE
a) 8080 Code
AM9S513_EXAMPLES MACROB8000 AmZB000 Assembler 1.0.1 Page 1
0000 PROGRAM AM99513_EXAMPLES;
0000 ORIGIN OH;
0000 r4
0000 z
0000 z AM9513 PORT ADDRESSES
0000 Z
0000 CONST CMDPRT=12H,
0000 DATAPRT=10H3;
0000 z
0000 AMPT13_EXAMPLES:
0000 Y4
0000 r4 AMP513 COMMAND INITIATION
Q000 x
0000 2102 FFAD Lo R2,0FFADH; ZSAVE CTRS. 1 3 & 4
0004 3r26 0012 ouT CMIDPRT,R2;
0008 z
Q008 Y4
0008 EJECT;
b) AmZ8000 Code

Figure 2-6. Command Initiation Software

. Establish a High on the C/D input.

. Establish a Low on the CS input.

. Establish a Low on the WR input.

. Sometime after the n minimum WR low pulse duration has been
achieved, drive WR high, taking care the CS, C/D and data
setup times are met (see Timing Diagram).

. After meeting the required CS, C/D and data hold times, these
signals can be changed (see Timing Diagram).

s wON

A new read or write operation to the Am9513 should not be
performed until the write recovery time is met (see Timing Dia-
gram in Electrical Specification.)

Setting the Data Pointer Register

The Data Pointer register selects which internal Am9513 register
is to be accessed through the Data port. Setting the Data Pointer
register automatically sets the Byte Pointer to 1, indicating a least
significant byte is expected for 8-bit data bus interfacing. If Master
Mode register bit MM14 = 0, the Data Pointer will automatically

24

sequence through one of the cycles shown in Figure 1-11 after
reading or writing each register, allowing sequential access to
internal registers. If MM14 = 1, auto-sequencing is disabled and a
single internal register can be repetitively accessed without re-
loading the Data Pointer. For convenience, bit MM14 can be set or
cleared by software command.

The Pointer is set as follows:

1. Using Figures 1-9 and 1-10, select the appropriate Data
Pointer Group and Element codes for the register to be ac-
cessed. Note that two codes are provided for the Hold regis-
ters, to accommodate both the Hold Cycle and Element Cycle
autosequencing modes shown in Figure 1-11. If auto-
sequencing is disabled, either Hold code may be used.

. Using the “Writing to the Command Register” procedure
given above, write the appropriate “Load Data Pointer” com-
mand to the Command register.

0104

0105
0107

0109
010B

olo0Dn
010F

0111
0112

F3

3EL9
D312

3EEQ
D312

3EES
n312

FE
co

INTSR: s INTERRUPT SERVICE ROUTINE

DISAEBLE INTERRUPTS

V1 A,019H
uT CMDPRT

ws es (O Xz er s ez e

ENABLE AUTO-SEQUENCING

-z

MVI A, OEOH

ouT CHDPRT

;

; CODE TO ACCESS REGISTERS
’

s DISABLE AUTO-SEQUENCING
HUI A, OEEH

ouT CMOPRT

i ENABLE INTERRUPTS AND RETURN
5

EX

RET

5

;

FAGE

a) 8080 Code

SET DATA POINTER TO COUNTER 1 HOLD' REG

AMP513_EXAMFPLES

0008
0008
0008
0008
000A

AnA A

vuUvR
000A
000A
000E
0012
0012
0012
0012
0016
001A
0014
001A
001A
001A
0014
Q01E
0022
0022
0022
0022
0024
0026
0026
0026

7C00

2102 FF19
326 0012

2102 FFEO
3R26 0012

2102 FFES
3B26 0012

7C04
7R00

MACROB000 AmZBO0O Assembler 1.0.1

z

INTSR: 2 INTERRUFT SERVICE ROUTINE
z
DI NVI,VI;
z
z SET DATA POINTER TG COUNTER
z
LD R2,0FF19H;
ouT CMDPRT,R2;3
%
2 ENABLE AUTO-SEQUENCING
z
LD R2,0FFEOH;
ouT CMDFRT,R2;
z
z CODE TO ACCESS REGISTERS
z
2 DISABLE AUTO-SEQUENCING
z
LD R2,0FFEBH;
gUT CMDFRT,R2;
z ENAELE INTERRUPTS AND RETURN
z
EI NVI,VI;
IRET;
z
z
EJECT;

b) AmZ8000 Code

Page

Figure 2-7. Am9513 Interrupt Service Routine
2-5

In many systems the Am9513 counters will be serviced by inter-
rupt routines. In such systems, it is important that the Am9513
service routines not be interrupted by another Am9513 service
routine while register accesses are occurring. Consider, for
example, an interrupt service routine which reads the Hold regis-
ter value in the Counter 1 logic group. This routine will set the Data
Pointer register and read the Hold register value. Consider the
sequence of events which would occur if, after this routine set the
Data Pointer registers, but before it read the Hold register, it was
interrupted by a second Am9513 interrupt routine. This second
routine might, for example, read the Counter 3 logic group Hold
register value. When this second interrupt routine finishes, it
returns control to the last half of the first interrupt routine. Because
the second routine has changed the Data Pointer register, the first
routine will not read the Hold register 1 contents. As can be seen
from the above scenario, the sequence of operations of setting
the Data Pointer register and accessing internal register locations
must not be interrupted by another Am9513 service routine.

One way of ensuring that this restriction is met is to disable
interrupts before setting the Data Pointer and not enabling inter-
rupts until the register accesses are performed. Note that when
auto-sequencing is used, interrupts should not be enabled until all
registers have been accessed. An alternative method of meeting
this restriction is to use software semaphores to prevent nesting
of Am9513 service routines.

Figure 2-7 shows sample interrupt service routines which set
the Data Pointer register to point to Counter 1’s Hold register
and enable Hold cycle auto-sequencing by clearing MM14. In
the AmZ8002 case, a 16-bit data bus interface is assumed,
requiring that the upper command byte be FF (hex). In the
coding examples given interrupts are disabled and enabled by
software command. Since the AmZ8002 architecture loads a
new Flag and Control Word (FCW) when responding to an

Interrupt request, the FCW loaded can disable further inter-
rupts. This provides an alternative interrupt inhibiting
mechanism for AmZ8002 systems and may be used in lieu of
the software commands.)

Reading the Status Register

The Am9513 Status register can be read either through the
Control port or through the Data port. Figure 2-8 shows sample
programs reading the Status register contents through the
Control port into the accumulator (A register) of an Am8080A/
8085A system or the RO register of an AmZ8002 system. It is
assumed that the AmZ8002 system has a 16-bit data bus;
since the status register is only eight bits wide, the high byte of
register RO is undefined.

The procedure for reading the Status register through the Control
port is given in the following.

1. Establish a High on the C/D input.

2. Establish a Low on the CS input.

3. After the appropriate CS and C/D setup time (see Timing
Diagram) make RD Low.

4. Sometime after RD goes Low, the Status register contents will
appear on the data bus. These lines will contain the informa-
tion as long as RD is Low. If the state of an OUT pin changes
while RD is Low, this will be reflected by a change in the
information on the data bus.

5. RD can be driven High to conclude the read operation after
meeting the minimum RD pulse duration.

6. CS and C/D can change after meeting the appropriate hold
time requirements (see Timing Diagram).

A new read or write operation to the Am9513 should not be
attempted until the read recovery time is met (see Timing Dia-
gram in Electrical Specification).

=iez W ws

z

0113 DR12

Tar
>
[}
m

a) 8080 Code

CODE TO READ STATUS REGISTER

CMDPRT

AMP513 _EXAMFLES

0026
0026
0026
0026
002A
0024
0024A

3R04 Q012

NN HNNN

EJECT

MACROB000 AmZB8000 Assembler

b) AmZ8000 Code

1.0.1 Page 3

CODE TO READ FROM STATUS REGISTER

RO,CMIFRT;

Figure 2-8. Reading the Status Register

2-6

Reading From the Data Port

The registers which can be read from the Data port are the Load,
Hold and Counter Mode registers for Counters 1 through 5, the
Alarm registers for Counters 1 and 2, the Master Mode register
and the Status register. The Status register can also be read from
the Control port. Reading the Status register with a 16-bit data bus
interface will return undefined information on DB8-DB15.

The procedure for reading these registers is as follows:

1. Prior to performing the actual read operation, the Data Pointer
should be set to point to the register to be read, as outlined in
the “Setting the Data Pointer” section of this document. In
cases where auto-sequencing of the Data Pointer is used, the
Pointer has to be set only once to the first register in the
sequence. When auto-sequencing is disabled, repetitive ac-
cesses can be made to the same register without reloading the
Data Pointer each time. Special care must be taken to reset
the Data Pointer after issuing a command other than “Load
Data Pointer” to the Am9513 or when operating a counter in
modes N, O, Q or R. See the “Prefetch Circuit” section of this
document for elaboration. _

. Establish a Low on the C/D input.

. Establish a Low on the CS input. _

. Establish a Low on RD after waiting for the appropriate CS and
C/D setup time (see Timing Diagram).

5. Sometime after RD goes Low, the register contents will ap-
pear on the data bus. In both 8- and 16-bit bus modes the low
register byte will appear on DB0-DB?7. In addition, in 16-bit
bus mode, the upper register byte will appear on the DB8-
DB15. For 8-bit bus mode, pins DB8-DB15 are not driven by
the Am9513.

~WOWN

This information will remain stable as long as RD is Low. If the
register value is changed during the read, the change will not
be reflected by a change in the data being read, for the
reasons outlined in the “Prefetch Circuit” section of this
document.

6. RD can be driven High to conclude the read operation after
meeting the minimum RD pulse duration.

7. CS and C/D can change after meeting appropriate hold time
requirements (see Timing Diagram).

8. After waiting the minimum read recovery time (see Timing
Diagram), a new read or write operation can be started. For
8-bit bus mode, steps 2 through 7 should be repeated to read
out the high register byte on DB0-DB?7. (If the Status registeris
being read in 8-bit mode, the two reads will return the Status
register each time. In 16-bit mode, reads from the Status
register return undefined data on DB8-DB15.) The user is not
required to drive CS or C/D High between successive reads or
writes, although this is permissible.

As described in the “Setting the Data Pointer” register section,
the Am9513 service routines should disable interrupts during
Data port register accesses if the service routine could be in-
terrupted by another service routine requiring access to Data
port registers.

Figure 2-9 shows sample programs for reading a Data port
register. The Am8080A/8085A code reads the data in two byte
reads (low byte first) and assembles it into the HL register pair.
The AmZ8002 program assumes that a 16-bit data interface is
being used and reads the data into register RO in a single word
read. This code can be substituted into the sample interrupt
service routines in Figure 2-7 in the place marked “Code to
Access Registers.”

s ez

0115 DB1O IN
0117 6F MOV
0118 DEK10 IN
Q11A 67 MOV
¥
5
FAGE

CODE TO READ FROM DATA FORT REG.

DATAPRT
L,
DATAPRT
H,

a) 8080 Code

A
A

AM9S13_EXAMFLES MACROB000 AMZBOOO Assembler 1.0.1 Page 4
0024 z v

0024 b CODE TO READ FROM DATA FORT REG.

0024 z

0024 3E24 0010 IN R2,DATAFRT;

002E b1

002E z

002E EJECT;

y

b) AmzZ8000 Code

Figure 2-9. Reading Through the Data Port

2-7

Writing to the Data Port

The registers which can be written to through the Data port are the
Load, Hold and Counter Mode registers for Counters 1 through 5,
the Alarm registers for Counters 1 and 2 and the Master Mode
register. The procedure for writing to these registers is as follows:

1. Prior to performing the actual write operation, the Data Pointer
should be set to point to the register to be written to, as outlined
above in the “Setting the Data Pointer” section of this docu-
ment. In cases where auto-sequencing of the Data Pointer is
used, the Pointer has to be set only once to the first register in
the sequence. When auto-sequencing is disabled, repetitive
accesses can be made to the same register without reloading
the Data pointer each time.

2. Establish the appropriate data on the DB0-DB7 lines (8-bit
bus mode) or DB0-DB15 (16-bit bus mode). When using the
8-bit bus mode, data bus lines DB13-DB15 should be set High
during the write operation and DB0-DB7 should be set to the
lower data byte for the first write and to the upper data byte for
the second write.

6. Drive WR High sometime after the minimu_m_w_low pulse
duration has been achieved, taking care the CS, C/D and data
setup times are met (see Timing Diagram).

7. After meeting the required CS, C/D and data hold times, these
signals can be changed (see Timing Diagram).

8. After meeting the write recovery time (see Timing Diagram) a
new read or write operation can be performed. For the 8-bit
bus mode, steps 2 through 7 should be repeated, this time
placing the high data byte on pins DB0-DB7. The user is not
required to drive CS or C/D High between successive reads or
writes, although this is permissible.

As described in the “Setting the Data Pointer” section, Am9513
service routines should disable interrupts during Data port regis-
ter accesses if the service routine could be interrupted by another
service routine requiring access to the Data port registers.

Figure 2-10 shows sample programs for writing a 16-bit value
to a Data port register. The Am8080A/8085A code loads the
register by making two byte transfers (low byte first) to the
Am9513 Data port. A 16-bit data bus interface is assumed for
the AmZ8002 coding example; accordingly, a single word

3. Establish a Low on the @ input. transfer can be used to load a register. This code can be sub-
4. Establish a Low on the CS input. stituted into the sample interrupt service routines in Figure 2-7
5. Establish a Low on the WR input. in the place marked “Code to Access Registers.”
H
H CODE TO WRITE TO DATA FORT REG.
M
O11B 7D MoV A,L
011C D310 ouT DATAPRT
011E 7C MoV A,H
011F D310 ouT DATAPRT
¥
§
3
0121 END
A
a) 8080 Code
AMP?513_EXAMPLES MACROB000 AmZB000 Assembhler 1.0.1 Page O
002E z
002E 4 CODE TO WRITE TO DIATA FRT REG.
002E 4
002E 3B26 0010 ouT DATAFRT,R2;
0032 4
0032 z
0032 4
0032 ENIDI.
b) Am28000 Code

Figure 2-10. Writing Through the Data Port

2-8

Chapter 3
Concatenating Counters

CONCATENATING COUNTERS

The Am9513 counters may be concatenated in a number of
different ways. These may be conceptually broken down into
count up and count down concatenation. Count up concatenation
will typically be used to count events with a precision greater than
16 bits. Count down concatenation is typically used to generate
output frequencies of high resolution.

To simplify concatenation, the Am9513 provides an internal TC
signal from the low order counter which can be selected as a
count source in the high order counter's Counter Mode register.
Thus, although any two counters can be concatenated with ex-
ternal strapping, usually adjacent counters will be used to allow
use of this internal TC signal.

In count up concatenation, both the high and low order counter’s
Load register should be cleared to 0. The low order counter will
start counting up from 0 and increment through 9999. (BCD
counting is assumed throughout this discussion, although binary
counting may, of course, be used). On the next source edge the
low order counter will go to TC and reload 0 from the Load
register. The active-going TC edge will also increment the high
order counter. The counters continue counting in this manner with
the high order counter incrementing each time the low order
counter reaches TC. In the examples which follow, Counters 1
and 2 will be used as the low order and high order counters
respectively.

In the first up concatenation configuration, shown in Figure 3-1,
the counters do not use external gating and therefore will free run.
The high order counter should use the TC output of the low order
counter as a source. The high order counter should count on
rising source edges and should be programmed for “no gating.”
The above requirements can be met by specifying 00 (hex) in the
upper byte of the high order counter's Mode register. The low
order counter should be programmed to count repetitively. The

required Mode register settings for Counters 1 and 2 are shown in
the figure; “don’t care” bits are marked “X.” Note that if the
internal TC signal is used to concatenate to the upper counter, no
restrictions are placed on the programming of the low order
counter’s Output Control field. Conversely, if external strapping is
used to concatenate the counter, the low order counter should
have an “Active High TC” output mode selected. Up count con-
catenation may also be used with either level or edge gating. For
level gating, the count source may either be externally gated with
external logic, or the low order counter may be programmed for
level gating, as shown in Figure 3-2. In either case, the high order
counter should be programmed for “no gating.” Recall that while
inthe TC state, the counters will count all source pulses issued to
them, irrespective of their gating or arming status. This can intro-
duce counting errors when level gating is used in up count con-
catenation. If the gate goes inactive while the low order counter is
in TC, the low order counter will count the next source edge,
which drives it out of TC. The counter will then stop counting until
the gate goes active again. This effectively introduces a 1 count
error into the accumulated count. The maximum error that can be
introduced is one extra count each time the gate is applied. This
worst case error will occur only if the gate is always applied when
the low order counter is in the TC state. For many applications
which use the gate infrequently, this small potential error is of no
significance. Applications sensitive to small count errors or appli-
cations with many gate-on, gate-off cycles should use external
gating logic to inhibit source pulses.

Edge gating functions can also be used in up count concatena-
tion. An edge gating circuit with concatenated counters should
function in a logically identical manner to a single edge-gated
counter. In other words, after an edge is applied to the concate-
nated counters, they should count until both reach TC. A new
edge should be required to repeat the cycle. Direct concate-
nation of two counters as was done for level gating up count

Am9513

SOURCE

SOURCE
COUNTER 1

out

INTERNAL
TC

|

SOURCE

COUNTER 2 out

15 0
l 000X lXXXXI 001X I 1XXX l

Counter 1 Mode Register

15 0
lOOOOlOOOOIOmX[‘XXXI

Counter 2 Mode Register

MOS-608

Am9513

SOURCE SCURCE
COUNTER 1 out
GATE GATE
INTERNAL
TC
SOURCE
COUNTER 2 our

15 0
|LEVELX| XXXX I 001X l 1XXX I

Counter 1 Mode Register

15

0
I 0000 I 0000 l 001X l 1XXX l

Counter 2 Mode Register

MOS-609

Figure 3-1. Count Up Concatenation with No Gating

3-1

Figure 3-2. Count Up Concatenation with Level Gating

concatenation will not work. In such an arrangement, the low
order counter, once triggered, will count to TC once and then
stop, awaiting a new gate edge. This is unsatisfactory since we
want the low order counter to continue counting until the high
order counter reaches TC.

Figure 3-3 shows one method of concatenating counters for
edge-triggered up counting. This method operates the counters
in a similar arrangement to that used for level gating, with the
requirement that each counter's output be programmed for an
active-high TC pulse.

The external flip-flop is set by an external, synchronous gate
signal. When both counters reach TC, the flip-flop is cleared. One
potential problem exists with this scheme. Once the flip-flop
clears, it will inhibit the low order counter’s gate input. The low
order counter will nevertheless count the next source edge,
driving itself out of TC. However, the high order counter will
remain in TC. When the next triggering gate edge is applied, the
flip-flop will set, allowing counting to begin. When the low counter
reachesiits first TC, the rising TC edge will cause the high counter
to leave TC. For a short period of time (the propagation delay of
the high order counter from source to output), both TCs will again
be active. This could potentially clear the flip-flop prematurely. To
inhibit this, the source signal is added as an additional input to the
NAND gate. If a relatively slow source is used with a high time
greater than the total propagation delay from the source input of
low order counter to the output of the high order counter, the
source input on the NAND gate will inhibit clearing of the flip-flop
during this transient.

The concatenation examples so far have assured that the count-
ers are to “count repetitively,” in the sense of counter mode
register bit CM5. If “count once” operation is desired, in which the
counters require an Arm command after each count cycle, dif-
ferent circuits are required.

When “no gating,” “count once” operation is desired, the circuit in
Figure 3-4 can be used. In this application, Counter 1 should be
programmed for active-high level gating and Counter 2 should be
programmed for a TC Toggled output. During counter initializa-
tion, the following set of commands should be used:

Initialize Counters’ 1 and 2 Mode and Load registers
LOAD Counters 1 and 2
Clear Counter 2 output
ARM Counters 1 and 2.

The counters are now ready to count, but since Counter 2’s output
is low, Counter 1's gate will inhibit counting. To start counter
operation, use the “Set Counter 2's output” command. The
counters will then count applied source pulses until Counter 2
reaches TC and toggles its output, inhibiting Counter 1's gate. It
can be seen that in this application, the “Set Counter 2’s output”
behaves as an ARM command. It is important that the counting
rate be low enough to ensure that Counter 1's gate will not go
inactive in close proximity to a source edge. High speed appli-
cations using a Counter 1 source period less than the propagation
delay from Counter 1’s source to Counter 2's output should use a
flip-flop to synchronize Counter 2’s output to Counter 1’s source in
order to meet timing parameters TGVEH and TEHGV in the
Am9513 data sheet. High-speed applications will end the count
cycle with a value slightly larger than 1 in Counter 1.

To add level gating to this “count once” feature simply involves
the addition of an AND function before Counter 1's gate input.
Now Counter 1 will be inhibited whenever Counter 2 toggles its
output or whenever the external gate is driven low. Note that this
circuit assumes the externally applied gate is synchronous to the
count source; asynchronous gating signals shouid be syn-
chronized with a flip-flop.

SOURCE

VIH

GATE

CLR

Am9513A/Am9513

L SOURCE

COUNTER 1 out

GATE
INTERNAL
TC

I—— SOURCE

COUNTER 2 out

15 L] 15 [

I1000[XXXXIOO1XI 1001]

IODDOlOOOﬂlOOIXl1001I

Counter 1 Mode Register

Counter 2 Mode Register

MOs-610

Figure 3-3. Count Up Concatenation with Edge Gating

3-2

GATE ——

CLR

EDGE GATING OPTION

Am9513A/Am9513
SOURCE SOURCE
COUNTER 1
GATE
INTERNAL
TC
(b) (a)
LEVEL GATING NO
OPTION GATING
OPTION
L— source
COUNTER 2 out
GATE
©
VIH
L o
15 [

I 100X l XXXXI 001X | 1XXX '

Counter 1 Mode Register

15 0
l 0000] 0000 l 001X I 1010 l

Counter 2 Mode Register
MOSs-611

Figure 3-4. Count Up Concatenation with Count Once Feature

The final case of concatenated up counting comprises edge
gating with the “count once” feature. This is achieved through a
simple variation of the level gating configuration. An external gate
signal sets the flip-flop and enables counting providing Counter
2's output is set. When Counter 2 reaches TC, its output will
toggle (i.e., clear) and the flip-flop will clear, inhibiting further
counting. To restart the counter in this configuration, the “Set
Counter 2 output” command should be issued and a new gate
edge should be applied in the order. As in the previous cases,
the applied gate edge should be synchronous to the Counter
1 source.

In order to analyze down concatenation, it is useful to separately
analyze the sequences followed for the high order and low order
counters. Figure 3-5 shows a typical count down concatenation

sequence, with the high order and low order count sequences
labelled. The high order counter simply decrements from some
initial value L until TC is reached. (In the following discussion and
figures, L and H are used to represent the Load and Hold register
contents respectively; K and N are used to represent arbitrary
count values.) It is then reloaded with L and repeats the se-
quence. Note that the high order counter, in general, will never
count to 0, since TC is generated by the source edge occurring
while the counter contains 1 and TC reloads the initial value L. The
countsequenceisthuslL, (L-1),...,2,1,L,(L-1),(L-2),...,2,
1, L. The low order counter starts from some initial value H and
counts down to TC. This TC output will be used to decrement the
high order counter by 1. The low order counter is now reloaded
with 0 and counts down through (assuming BCD counting) 9999
to 1. This sequence of reloading 0 and counting down to the next

|
HIGH ORDER ’ \ ’ \
COUNTER
TC OUTPUT
L H L 10000 L 10000 | H I 10000 L 10000
COUNTER
TC QUTPUT

U
JaWaN

MOs-612

Figure 3-5. Conceptual Sequence for Count Down Concatenation

3-3

TC will be repeated by the low order counter until the high order
counter has decremented to 1. On the next low order TC, the high
order counter is driven to TC and reloads L. The low order counter
“should reload H, rather than 0, and repeat the complete count
cycle. It can be seen that an important characteristic of the low
order counter is that it reloads H once for each high order TC, and
reloads 0 otherwise. This need for the low order counter to selec-
tively reload 0 or H differs from up concatenation where the low
order counter is always reloaded with the same value (0).

Figure 3-6 ties the above considerations together in a count
repetitively, no gating, count down concatenation example. The
low order counter is operated in Mode V, in which the gate is used

Am9513A/Am9513

SOURCE
COUNTER 1

SOURCE

GATE INTERNAL

TC
[—- SOURCE

COUNTER 2 out

15 0
[0000 I XXXX l 111X 1 OXXX I

Counter 1 Mode Register
15 0

IDODIIOOOOIDMXIODNI

Counter 2 Mode Register

MOS-613

Figure 3-6. Count Down Concatenation

to select either the Load or Hold register as a reload source. The
high order counter is operated in Mode D, with an active-high TC
output selected in order to properly drive the low order counter's
gate. In addition, the high order counter should be programmed to
count on falling edges of the low order counter’s internal TC
output. Figure 3-7 shows timing waveforms generated by this
concatenation configuration. Note that the count sequence gen-
erated never has 0 in the upper counter (disregarding the special
case where L = 0). This means that the value stored in the high
order counter should be biased by adding 1 in order to generate
the correct divider ratio. For example, to divide by 39264178
(BCD), the high order counter’'s Load register should be set to
3926 + 1 = 3927 and the low order counter’s Hold register should
be set to 4178. The low order counter’s Load register should be
set to 0 to ensure proper count value rollover. Also note the
unusual count sequence on the TC before the low order counter
reloads from the Load register. For the above example of dividing
by 39264178 the counters will count 00010002, 00010001,
00010000, 39279999, 39279998, ... , 39270002, 39270001,
39274178, 39264177, 39264176, 39264175, ... rather than
00010002, 00010001, 00010000, 39274178, 39274177, ... ,
39270002, 39270001, 39270000, 39269999, 39269998,
39269997,

In some applications it may be desirable to level or edge gate with
down concatenation. Because the low order counter uses the
gate to select the reload source, the gate input cannot be used to
start and stop counting in the low order counter. Accordingly,
external gating logic must be used. Figure 3-8 shows the connec-
tions required for count down concatenations with level gating.
Level gating is achieved by inhibiting source pulses when the
gate goes inactive.

Edge gating, shown in Figure 3-9, uses an external gate signal to
set an enabling flip-flop. The enabling flip-flop is cleared when
both counters reach TC. The delay flip-flop ensures that one
additional count occurs after both counters reach TC in order to
drive the low order counter out of TC, thereby deactivating the
enabling flip-flop’s clear input. Note that the counters stop at an
unusual point in the count sequence, ((L—1), (H—1) in Figure 3-7
or 3926 4177 for the earlier example) but this is not important

B ERER D CYED E.ER =/) 0 .
oy e

}

s
1

)

s

}(il

(e)] K XK-1
M
(

A
HIGH ORDER '
TC

Count Down with Edge Gating Stops Here
.
(

MOs-614

Figure 3-7. Timing Waveforms for Am9513 Count Down Concatenation

Am9513A/Am9513
SOURCE) SOURCE
COUNTER out
GATE INTERNAL
TC
GATE D Q I
SOURCE
P COUNTER out
SYNCHRONIZING
FLIP-FLOP
15 0 15 0
Ioooonxxx]111onxxxI]oomloouojomx[oom]
Counter 1 Mode Register Counter 2 Mode Register
MOS-615
Figure 3-8. Count Down Concatenation with Level Gating
Amg513A/Am9513
SOURCE ™\ SOURCE
N COUNTER out
GATE
1K TC
Q D
SOURCE
GATE P> P> a COUNTER out
cLR
ENABLING DELAY
FLIP-FLOP FLIP-FLOP
15 0 15 0
Loooo I xxxxl 111X l 0001 I [0001 I 0000 I 001X l 0001 l
Counter 1 Mode Register Counter 2 Mode Register
MOsS-616

Figure 3-9. Count Down Concatenation with Edge Gating

since the timeout duration remains constant (at (L—1), H for
Figure 3-7 and 3926 4178 for the earlier example). To ensure that
the counters’ first timing cycle has the same timeout duration as
subsequent timing cycles, it is important that the high and low
order counters be initialized to (L— 1) and (H—1) respectively prior
to the first timing cycle. Note that if the Counter 1 source period is
less than the propagation delay from Counter 1's source through
Counter 2’s output, through the two flip-flops to the OR gate, then
the low order counter’s contents at the end of a count cycle may
be offset by a few counts. In such cases, the value used to
initialize the counters should be similarly offset.

3-5

The previous count down concatenation examples have as-
sumed the counters are to count repetitively. To add count once
capability to a count down configuration, the high order counter
should be programmed to generate a TC Toggled output
waveform. This output should be used to gate source pulses
through an AND gate into the low order counter, as shown in
Figure 3-10. The count cycle will now appear as shown in Figure
3-11. Note that when the counters stop, the high order counter's
output will be low and the low order counter’s contents will be
9999. To reset the counters for another timing cycle, a LOAD
command should be issued to the low order counter, which will

Am9513A/Am9513
SOURCE ——_D SOURCE
COUNTER 1
GATE INTERNAL
TC
L SOURCE
COUNTER 2 ouTt
15 0 15 0
| 0000] XXXXl 111X I 0XXX I [0001 I 0000 I 001X I 0010]
Counter 1 Mode Register Counter 2 Mode Register
MOS-617
Figure 3-10. Count Down Concatenation with Count Once Feature
CLEAR
HIGH ORDER
OUTPUT COMMAND
(TRIGGER)
|
LOW ORDER]
COUNTER HX(H—-l) (H-2) 2 X 1 X 0 XDSBQ 9998 2 X 1 X 0 X 9999
VALUES
LOW ORDER /,—\\ /I_\\
TC | (G
l U 22
{ {C
HIGH ORDER 3 35
COUNTER L K X (K-1) 1 X L
VALUES [4
22 2
{C
HIGH ORDER I [
ouTPUT
MOs-618

Figure 3-11. Timing Waveforms for Count Down Concatenation with Count Once Feature

reload from the Hold register. The output of the high order counter
can now be set to enable counting. Level gating caf be added to
count-once, count down concatenation by using a 3-input AND
gate and driving the third input with an external level gate signal.
Count-once, count down concatenation with edge gating can be
achieved with the circuit shown in Figure 3-12. The flip-flop is set
by an external synchronous gate edge; it is cleared at the end of
the count cycle when Counter 2’s TC Toggled output goes low.

The concatenation examples presented so far have used two
counters to create a 32-bit effective count length. These config-
urations can be extrapolated to concatenate 3 or more counters

3-6

to any desired length. Other concatenation variations adventure-
some users may wish to investigate are those that use the Alarm
registers on Counter 1 and 2 to generate unusual count se-
quences. Since these Alarm register configurations usually add
much complexity for only a limited increase in functionality they
are not discussed in this manual.

Saving Concatenated Count Values

The contents of concatenated counters may be read by issuing a
SAVE command to the appropriate counters, which will transfer
the current counter contents into the counter's Hold registers.

VIH

GATE

Am9513A/Am9513
SOURCE —_—__“D SOURCE
COUNTER 1
GATE INTERNAL
C
’ b Q SOURCE
COUNTER 2 out
CLR
15 0 15 0
I 0000 l XXXX l 11X l oxxd [0001 | 0000 T 001X l 0010 l

Counter 1 Mode Register

Counter 2 Mode Register

MOSs-619

Figure 3-12. Count Down Concatenation with Edge Gating and Count Once Feature

(Since in count down concatenation the Hold register is used to
generate the count sequence, in many such applications it may
not be feasible to save the low-order counter.) Because the count
ripples between concatenated counters, the possibility exists that
a SAVE command will be issued after the low order counter
increments/decrements but before the carry/borrow ripples
through to the high order counter, resulting in an incorrect value
being saved in the high order counter’'s Hold register. The user
can protect against this by examining the contents of the low
order counter's Hold register immediately after issuing the SAVE

3-7

command. If the Hold register is equal to the value that would
have been expected immediately following generation of a
carry/borrow signal, this indicates that the high order value saved
is suspect. A new SAVE command should therefore be issued to
the high order counter to save a correct count. By the time the low
order Hold register contents are read and tested, and a new
SAVE command is issued, the high order counter’s contents will
be stable. The “Time-of-Day” chapter discusses these consider-
ations with respect to Time-of-Day accumulation, and includes a
representative software listing.

Chapter 4
Time-of-Day Counting

Time-of-Day Counting with the Am9513

Time-of-day (TOD) counting in the Am9513 is controlled by
Master Mode register bits MMO and MM1. When these bits are
setto 01, 10 or 11, logic on Counters 1 and 2 is enabled to cause
the counters to roll over at the counts required for Time-of-
Day accumulation.

Figure 4-1 shows the format of the 24 hour clock. The two
high order decades of Counter 2 contain the hours digits and can
hold a maximum count of 23. The two low order Counter 2 dec-
ades indicate minutes and will hold values up to 59. The three
most significant Counter 1 decades count up to 59.9 and are
used to accumulate seconds and tenths of seconds. The low
order Counter 1 decade is used to prescale the input fre-
quency to generate tenth-of-second periods to the next higher
counter decade.

Figure 4-2 shows the Counter 1 input frequencies supported.
Note that the setting of Master Mode register bits MMO and MM1
selects the optional prescaling factor used in Counter 1’s least
significant decade. The 50Hz (MM0 = 0, MM1 = 1) option and
60Hz (MMO = 1, MM1 = 0) option permit AC powerline frequency
sources to be used. When the 100Hz (MMO = 1, MM1 = 1) option
is used, the least significant decade of Counter 1 accumulates
time in hundredths of a second (tens of milliseconds). Many
convenient frequency sources, including the on-chip oscillator,
may be used to drive the TOD clock.

Generating Time-of-Day Reference Frequencies

Bits CM11-CM8 in Counter Mode register 1 select the source
input used to drive the Counter 1 Time-of-Day circuitry. The
variety of inputs offered provides a number of easily implemented
frequency sources.

If a 1MHz crystal is connected to the X1 and X2 oscillator inputs,
and the BCD prescaling mode is selected (MM15 = 1), a 100Hz
signal will be generated on internal signal F5. This F5 source can
be selected as the count source for Counter 1 by setting Counter
1 Mode register bits CM11-CM8 to 1111.

As shown in Figure 4-3, crystals between 1 and 10MHz, in IMHz
increments, may also be used. The frequency prescaler is used
with BCD scaling mode (MM15 = 1) to divide the crystal's fre-
quency down to a multiple of 100Hz on F5. This F5 signal is then
selected by Master Mode bits MM7-MM4 to drive the FOUT pin.

The FOUT scaler, programmed by bits MM11-MM8, is set to
generate a 100Hz FOUT signal. The FOUT pin is externally
strapped to one of SRC1-SRC5 or GATE1-GATES. Counter 1
Mode register bits CM11-CM8 are then used to select the driven
input pin.

If a spare counter is available, it can be used to prescale almost
any crystal input frequency to produce an output rate appropriate
for Counter 1’s Time-of-Day input. Counter 5 is the easiest to use
for this prescaling since its output appears as the TCN—1 input to
Counter 1. This means no external strapping is required for the
prescaled signal; all that is required is to set the Counter 1 Mode
register bits CM11-CM8 to 0000 to select the TCN—1 input.

One readily available, low-cost crystal useful in this configuration
is the 3.579545MHz TV color burst crystal. When divided by
59659, a 60Hz output is generated. Figure 4-4 shows a sample
configuration using this crystal. Counter 5’s Mode register should
be set to use F1 as the source, to count down repetitively, to
reload from the Load register and to disable special gating. The
Gating Control Field should be set to “No Gating.” Since internal
concatenation is used, the Counter 5 Output Control Field setting
is not relevant.

Note that in BCD mode the maximum counter value is 10000
decimal. If Counter 5 is to divide by 59659 decimal, the counter
must operate in binary mode to get arange of 65535. Accordingly,
binary counting should be selected in Counter 5's Mode register,
andthe Load register should be loaded with the binary represen-
tation of 59659 decimal (E90B hex). Figure 4-4 shows the re-
quired Counter 5 Load and Mode register configurations.

Initializing to Current Time-of-Day

The Time-of-Day circuitry requires a special initialization
sequence. The following steps MUST be performed in the
order given.

The first step is to set the Master Mode register and then the
Counter Mode registers to the desired values. The Master Mode
bits controlling Time-of-Day are MMO and MM1; these have been
discussed earlier. The user may also set Master Mode bits MM2
and MMS at this time if the alarm feature is to be used.

The Counter 1 Mode register should be set to select the desired

source input. For most real-time applications, the Gating Control
field will be set for “No Gating,” although edge and level gating

Counter 2

Ci5 | C14 | C13 | C12 | C11 | C10 Cc9 cs

c7 Cé C5 Cc4 C3 c2 C1 co

(v 3

(6) 9)

Hours

Counter 1

Minutes

Cis | C14 | C13 | C12 | C11 C10 C9 Ccs8

(974 Ccé C5 C4 Cc3 Cc2 C1 co

(©) ©)

©

Seconds

1/10 Sec. +5, 6, 10

MOsS-620

Figure 4-1. Time-of-Day Configuration

MM1 MMO Configuration
0 0 TOD disabled
0 1 TOD, 50Hz input
1 0 TOD, 60Hz input
1 1 TOD, 100Hz input

Figure 4-2. Time-of-Day Control Options

can be used in Time-of-Day mode. For general purpose time-
keeping, the Count Control field should be set to disable special
gate; reload from Load; count up; BCD counting; and count
repetitively. To generate special functions, the user may select
other settings for these bits with the exception of the BCD bit,
Time-of-Day counting requires that the counter be set for BCD
operation. The Output Control field setting does not affect the
Time-of-Day operation since the Counter 1 output will be inter-
nally concatenated to the Counter 2 input.

Counter 2's Mode register should be set to the same as Counter
1’s with the exception that the Count Source Selection field for
Counter 2 should be set to active-high counting from TCN—1, to
enable internal concatenation.

The second step is to initialize Counters 1 and 2 to a value of all
zeros. This is done by setting Load registers 1 and 2 to 0 and
transferring their contents into Counters 1 and 2. Loading the
counter with zeros conditions the Time-of-Day count circuitry and
must follow the setting of the Master Mode register and Counter
Mode registers. If auto-sequencing is being used, each counter’s
Load register can be set to zero after the Counter's Mode register
is loaded. It is important, however, that the Master Mode register
be loaded first, and that the Counter Mode registers be loaded
before zeros are transferred into the counter. Note that the Master

Mode register contents may be changed after this step, providing
MMO and MM1 are not altered; if these are changed, the Time-
of-Day circuitry must be reconditioned.

Step 3 of the initialization process involves setting Load registers
1 and 2 to the current time and transferring this into the counters.
The format used for the time is that given in Figure 4-1. The user
must ensure that the time loaded does not set any of the decades
to an illogical value. In particular, no decades should be set to A
(hex) through F (hex); the high order decade of Counter 1 and the
next-to-least-significant decade in Counter 2 should be 0 through
5; the two high order decades of Counter 2 should be 00 through
23 (BCD); and the low order decade of Counter 1 should be 0.
Note also that the Am9513 uses a 24 hour clock, so PMtimeson a
12 hour clock must have a 12 hour bias added.

The fourth step of the initialization process is to set Load registers
1 and 2to all 0s. Counter 1 generates a TC and reloads itself from
the Load register on the count source edge after reaching 59.99
seconds (100Hz input assumed). Similarly Counter 2 generates a
TC on the count source edge after 23:59. By setting the Load
registers to 0, the user ensures that the counter will “roll over” to
the correct time at TC. For example, a time of 23:59:59.99 will roll
over to 00:00:00.00 at midnight.

The final initialization step is to start the counters by writing the
“Arm Counters 1 and 2” command (FF23 hex) to the Am9513’s
Command register. In most Time-of-Day applications, no sig-
nificant error will be introduced by the delay from the entry of the
current time into the counters to the Arming of the counters. This
is partly due to the maximum resolution of 10 milliseconds in the
Time-of-Day circuitry. In high precision applications, which may
use a frequency prescaler for added precision, the user may wish
to load a time somewhat later than the current time and delay
arming the counter until the current time matches the loaded time.

X1
PRESCALER
L F5
INTERNAL . -
7.omHz] OSOILLATOR +10 m n £10
[xe
FOUT 100Hz 700Hz
FOUT DIVIDER (+7)
EXTERNAL
JUMPER
COUNTER 1
SRC1
INTERNAL
TC
TCN-1
COUNTER 2
1Hz

MOs-621

Figure 4-3. Time-of-Day Counting with a 7MHz Crystal

4-2

X1
PRESCALER
3.579545MHz —— NTERNAL
cotor sursT L] OSCILLATOR
CRYSTAL ==,
F1
COUNTER 5
(+59659)
LOAD REG. = E90B HEX
3.579545MHz MODE REG. = 0B21 HEX
INTERNAL
TC
ot COUNTER 1
60Hz
INTERNAL
TC
TCN-1
COUNTER 2
1Hz

MOS-622

Figure 4-4. Time-of-Day Counting with a Color Burst Crystal

Reading the Current Time

The user may read the current time from the Am9513 by issuing
the “Save Counters 1 and 2" command (FFA3 hex) to the
Am9513. This causes the contents of Counters 1 and 2 to be
transferred into Hold registers 1 and 2. If the user were to now
read the Hold register contents, an incorrect time may be read.
This is because although Counters 1 and 2 are both synchronous
counters, the TC output from Counter 1 ripples through to incre-
ment Counter 2. If the save operation occurred just after Counter
1 incremented but before Counter 2 incremented, the value
stored in Hold register 2 would be in error. (This consideration
should not be confused with the somewhat different points dis-
cussed in Appendix A). The user can easily protect against this by
examining the contents of Hold register 1. If they are 0, a TC may
have just occurred and Hold register 2 may have an erroneous
value. Accordingly, if Hold register 1 contains 0, the “Save
Counter 2” command (FFA2 hex) should be executed to resave
Counter 2. By the time this test for 0 is performed, and Counter 2
is resaved, any rippling carry will have propagated through
Counter 2.

Setting the Alarm Time

Master Mode register bits MM2 and MM3 control the Com-
parators associated with Counters 1 and 2. When a Comparator
is enabled, its output is substituted for the normal counter output
on the associated OUT1 and OUT2 pins. The polarity definition
for the Comparator output will depend on the active-high or
active-low definition as programmed in the appropriate Counter
Mode register. Once the Comparator output is true, it will re-
main so until the count changes and the comparison therefore
goes false.

43

The two Comparators can always be used individually in any
operating mode. One special case occurs when the time-of-day
option is involved and both Comparators are enabled. The opera-
tion of Comparator 2 will then be conditioned by Comparator 1 so
that a full 32-bit comparison must be true in order to generate a
true signal on OUT2. OUT1 will continue, as usual, to reflect the
state of the 16-bit comparison between Alarm register 1 and
Counter 1.

In some systems, the Alarm output on pin OUT2 might be used to
generate an interrupt request to the host CPU. When changing
the Alarm register values on a system such as this, the Alarm
interrupt should be ignored by the CPU while the Alarm registers
are being reloaded, since spurious comparisons may be gener-
ated during the reloading process.

Other Time-of-Day Variations

So far this discussion has assumed that Counters 1 and 2 are
operated together. The user may, however, elect to drive Counter
2 from a source other than the Counter 1 output, to permit inde-
pendent accumulation of seconds (Counter 1) and hours/minutes
(Counter 2). Note that although Counters 1 and 2 may be inde-
pendently operated, the Time-of-Day enable bits (MMO and
MM1) are such that either both or neither of the two counters are
in Time-of-Day mode; the user cannot set only one counter for
Time-of-Day counting.

Separating the two counters would permit Counter 2 to keep track
of hours and minutes in real-time, and Counter 1 to time events up
to 60 seconds long. The TC output from Counter 1 might perhaps
be used to interrupt the CPU. Note that in normal, concate-
nated Time-of-Day operation, the Counter 1 TC may be used to
generate interrupts every minute, a feature useful in real-time

scheduling applications. Other adjustments can be made to en-
hance the usefulness of Counter 1. For example, with a 100Hz
input rate specified for Counter 1, a 1kHz input would provide
interrupts at six-second intervals. Similarly, a 6kHz input would
provide interrupts every second, etc.

Counting Down in Time-of-Day Mode

The Am9513 allows the user to count down in Time-of-Day
mode by setting bit CM3 in the Counter 1 and 2 Mode registers.
A few other changes are necessary from counting-up to ensure
correct operation.

When initializing the counters for count up operation, they were
first loaded with zeros to condition the time-of-day circuitry. To
condition the Time-of-Day circuitry for count down applications,
instead of zeros, Counter 1 should be loaded with 59.94, 59.95 or
59.99 for 50Hz, 60Hz, or 100Hz input frequencies respectively,
and Counter 2 should be loaded with 23.59. The current time
should then be loaded into the counters and the Load registers
should be set to all zeros to ensure proper roll over.

In counting up, the leading edge of the low order counter’s TC is
used as a carry to increment the high order counter. When
counting down a borrow, rather than a carry signal is desired.
Hence, the trailing edge of TC should be used to decrement
Counter 2. When internal concatenation is used (Counter 2 Mode
register bits CM11-CM8 = 0000) Counter 2 should be set to count
on the falling source edge (Counter 2 Mode register bit CM12 =
1). Figure 4-5 shows carry/borrow propagation for up and down
time-of-day counting.

COUNTER 2]23:15 23:16 23:17 23:17
COUNTER 1 59.98 59.99 00.00 00.01
SOURCE
COUNTER 1 TC
TIME-OF-DAY UP COUNTING
INCREMENT
ON THIS EDGE
COUNTER 2 lza:n '23:17]zs;n ,23:15
COUNTER 1 00.02 00.01 00.00 59.99
COUNTER 1 TC
TIME-OF-DAY DOWN COUNTING
DECREMENT
ON THIS EDGE
MOS-623

Figure 4-5. Timing Waveforms for Time-of-Day Counting

As with counting up, an incorrect value can be read from the
counters if a Save operation is performed while a carry/borrow is
rippling between Counters 1 and 2. In count up mode, erroneous
readings are prevented by resaving Counter 2 when the value
read from Counter 1 was 0. In count down, Counter 2 should
be resaved if the value read from Counter 1 indicates a borrow
was just generated. This value depends on the input scaler
used. For 50Hz, it is 59.94; for 60Hz it is 59.95; for 100Hz it is
59.99. For general-purpose software routines the user can mask
out the last decade and resave Counter 2 whenever the upper 3

4-4

decades read from Counter 1 are 59.9. As with counting up, the
purpose of the resave operation is to ensure that the rippling
carry/borrow signal has propagated through Counter 2 and
Counter 2's contents have settied.

Accelerated Time

In some applications, such as accelerated life cycle analysis or
non-real-time simulations, it is useful to have Time-of-Day ac-
cumulations occur at accelerated or decelerated rates. The
Time-of-Day circuitry on the Am9513 is capable of operating at
the full clock rate permissible. For example, with a 6MHz input
rate to Counter 1 and with the 60Hz, Time-of-Day prescaler
selected (Master Mode register bits MM1-MMO = 10), Time-of-
Day accumulation would proceed 105 times faster thanreal time.

Am8080A/8085A TIME-OF-DAY SOFTWARE

Figure 4-6 provides sample Am80B0A/8085A software listings of
general-purpose Time-of-Day routines useful in setting and
reading the current time and setting the Alarm time. Each of the
basic operations is coded as a subroutine. The user should save
those AmB085A registers containing valuable data prior to calling
these routines, since some registers are overwritten.

Subroutine SETTIME initializes the Master Mode register and
Counter Mode registers 1 and 2 and then sets the counters to the
current time. The Master Mode register is set to DOOF (hex),
resulting in: BCD prescaling; Data Pointer autoincrement dis-
abled; 8-bit bus interface; FOUT off; Comparators 1 and 2 en-
abled; and Time-of-Day enabled for a 100Hz input. This Master
Mode register configuration is representative of a system using a
1MHz crystal on X1 and X2; since BCD prescaling is used, F5 can
drive counter 1 with the required 100Hz input signal.

Each Counter Mode register is set for BCD repetitive up counting,
with no gating and the special gate disabled. Reloads are set to
occur from the Load register only. Counter 1 uses F5 as a count
source and Counter 2 uses internal (TCN—1) concatenation.
Counter 1’s output is set to the high-impedance state. If the
comparators had been disabled, a TC output could have been
selected for Counter 1 to generate interrupts every minute. (Re-
call that when the comparators are enabled, the normal TC or
toggle output is disabled.) Accordingly, in this sample configura-
tion OUTT, if enabled, would reflect the output of Comparator 1.
Counter 2's output is set to active-high TC, but since both Com-
parators 1 and 2 are enabled in Time-of-Day mode, the output will
indicate when a 32-bit match occurs.

Following Counter Mode register initialization, Counters 1 and 2
are loaded with zero to condition the Time-of-Day count circuitry.
The current time, stored in variable TIME is then loaded into the
counters. Note the data format used for TIME is hours, minutes,
seconds and tenths-of-seconds. Finally, the Load registers are
reset to zero and the counter is armed.

The second subroutine, ALARMSET, sets the Counter 1 and 2
Alarm registers to the Alarm time stored in variable ALARM. The
counter outputs may generate spurious compares while the
Alarm registers are being loaded; the subroutine: assumes the
desired Alarm time has been stored in variable ALARM with the
same format used for variable TIME. The subroutine also as-
sumes that Master Mode register bits MM2 and MM3 have been
previously set to ‘1’ to enable the comparator circuitry.

Subroutine READTIME reads the time from Counters 1 and 2 and
stores it in variable TIME. As discussed previously, special pre-
cautions are required when reading the time to avoid saving
erroneous values generated by the ripple carry. The subroutine
provides the required safeguards.

®e 0o ve se es 50 oo 0o s oo

R OO N

[l
n -
. oo

11-
14:
15:
1€:
17:
186:
1¢:
2¢:
21:
22:
_23:
24:
25:
26:
27:
2&:
29:
3d:
31:
32:
332
34
35:
36
37
38
39:
490
41:
42
43:
44:
45:
46€:
47
485:
49:
3@:
51:
52:

C

54«
55:
5€:

.

o O
=~

210¢e

eo12
2010

21929
g1e2
2104
9146
2108
2104

21@C
¢1eE
2110
02112
0114
2116

118
2114
011C
211E
2120
9122

0124
6126
0128
212A
212C

@12E
0130
0132
0134
213€

2138
213A

3E17
D312
SEOF
D319
3EDQ
D310

3E21
D312
3E3C
D312
3EQF
D310

3E22
D312
SE39
D310
3EQD
D31¢

3EQ9
D312
SE0@
D310
D310

SEJA
D312
SEQQ
D31@
D310

3E43
D312

ORG 10@H

’
sEQU’S FOR AM9E13 TIME-OF-DAY

’
CMDPRT EQU 12H
DATAPRT EQU 12H

.o e o

3 COMMAND PORT
y DATA PORT

y SUBROUTINE SETTIME SETS CURRENT
3y TIME USING DATA STORED IN VARIABLE TIME

SETTIME:

ySET MASTER MODE REGISTER

1

MVI A,017H
OUT CMDPRT
MVI A,QFH
0UT DATAPRT
MVI A,QDOH
OUT DATAPRT
’

»SET DATA POINTER TO
yMASTER MODE REGISTER
sLOWER BYTE

sUPPER BYTE

3SET COUNTER 1 MODE REG.

y

MVI A,01H
OUT CMDPRT
MVI A,@3CH
OUT DATAPRT
MVI A,OFH
OUT DATAPRT

’

i SET DATA POINTER TO
; COUNTER 1 MODE REG
7y LOWER BYTE

yUPPER BYTE

y SET COUNTER 2 MODE REG.

’

MVI A,@2H
OUT CMDPRT
MVI A,B39H
OUT DATAPRT
MVI A,QH
OUT DATAPRT

sCLEAR COUNTERS

y

MVI A,@9H
OUT CMDPRT
MVI A,QH
OUT DATAPRT
OUT DATAPRT

y

MVI A,QAH
OUT CMDPRT
MVI A,QH
OUT DATAPRT
OUT DATAPRT

’
MVI A,@43H
OUT CMDPRT

’

3 SET COUNTERS 1
’

7 SET DATA POINTER TO
3 COUNTER 2 MODE REG
yLOWER BYTE

1 UPPER BYTE

1 AND 2

y SET DATA POINTER TO
;LOAD REG 1

iLOWER BYTE
yUPPER BYTE

3 SET DATA POINTER TO

» LOAD REG 2

y LOWER BYTE
sUPPER BYTE

7 TRANSFER- CONTENETS OF LOAD
sREGS 1 AND 2 INTO COUNTERS

AND 2 TO CURKENT TIME

Figure 4-6. Sample 8080/8085 Time-of-Day Subroutines

45

[N NOYONS
AN &

C

82:

84:

91:

94:

S6:

g7

g&:

99:
100:
101:
102:
103:
104:
195:
196:
1e¢7:
12¢&:
126:
11¢:
111:
112:
113:
114
115:
116:
117:

213C
@13E
21492
0143
2145
0148

@14A
214C
B14E
9151
0153
0156

0158
215A

913C
P15E
g1€0
2162
U164

01€B
01€8
916A
@16C
P16E

0170
2172

2174

9175

g17¢

217D
@17F
2161
@164
2166
2189

0188

3E29 MVI A,29H ; SET DATA POINTER TO
D312 OUT CMDPRT ;COUNTER 1 LOAD REG.
347601 LDA TIME+3 ; TENTHS+=CF-SECONDS
D319 OUT DATAPRT
347701 LDA TIME+2 ; SECONDS
D310 OUT DATAPRT
;
3EOA MVI A,QAH ;SET DATA POINTER TO
D312 OUT CMDPRT ;COUNTER 2 LOAD REG
3A7601 LDA TIME+1 ;MINUTES
D310 OUT DATAPRT
347501 LDA TIME ; HOURS
D310 OUT DATAPKT
;
3E43 MVI A,@43H ;TRANSFER CONTENTS OF LOAD
D312 OUT CMDPRT ;REGS 1 AND 2 INTO COUNTERS
;
;SET LOAD REG 1 AND 2 TO 2
;
ZE09 MVI A,@9H ;SET DATA POINTER TO
D312 OUT CMDPRT ;LOAD REG 1
3E00D MVI A,QH
D310 OUT DATAPRT ;LOWER BYTE
D310 OUT DATAPRT ;UPPER BYTE
;
3EQA MVI A,0AH ; SET DATA POINTER TO
D312 OUT CMDPRT ;LOAD REG 2
3E00 MVI A,QH
D319 OUT DATAPRT ; LOWER BYTE
D310 OUT DATAPRT ;UPPER BYTE
;
;ARM COUNTERS 1 AND 2 TO START COUNT
1
3E23 MVI &,823H ;ARM 1 AND 2 COMMAND
D312 OUT CMDPRT
]
co RET
;
’
0000P000 TIME: DB 2,0,0,@¢ ; CURRENT TIME, IN FORMAT
; HOURS, MINUTES, SECONDS,
; TENTHS-OF-SECONDS. NOTE LOWER
; DECADE OF TENTHS-OF-SECONDS DIGIT
{MUST BE 0.
Q0200038 ALARM: DB @,3,0,0 ;ALARM TIME, SAME FORMAT
;AS TIME.
i
1
ALARMSET: ; SETS ALARM TO VALUE
;STORED IN VARIABLE ALARM
1]
3ED7 MVI A,@7H ;SET DATA POINTER TO
D312 OUT CMDPRT ;ALARM REG 1
2A7C01 LDA ALARM+3 ; TENTHS-OF-SECONDS
D310 OUT DATAPRT
3A7RO1 LDA ALARM+2 3 SECONDS
D31¢ OUT DATAPRT
;
3EJF MVI A,QFH ;SET DATA POINTER TO

Figure 4-6. Sample 8080/8085 Time-of-Day Subroutines (Cont.)

4-6

118: 218D D312 OUT CMDPRT
11¢: P18F 3A7AQ1 LDA ALARM+1
1202 21¢2 D310 CUT DATAPRT
121: 2194 3A7901 LDA ALARM
122: 0197 D310 OUT DATAPRT
123: @1¢s8 C9 RET

124: H

125: ’

126:] H

127: READTIME:

12&:

129: ’

1323 J1SA 3EA3 MVI A,QA3H
131: 919C D312 OUT CMDPRT
132: ’

133: g19F 3E11 MVI A,Q011H
134: @1AQ D312 QUT CMDPRT
135: ©1A2 DB10 IN DATAPRT
13€: 01A4 47 MOV B,A
1372 @1AS 327801 STA TIME+3
138: ©1A8 DB1D IN DATAPRT
13¢: @1AA 327701 STA TIME+2
14¢: @1AD A7 ANA A

141: J1AE C2BAQ1 JNZ CTR2IN
142: 91B1 78 MOV A,B
143: 91B2 A7 ANA A

144: 21B3 C2BAG1 JNZ CTR2IN
145: H

146: sCOUNTER 1
147: H)
148: 91B6 3EAl MVI A,QA1H
14¢: @1B8 D312 QUT CMDPRT
150: H

151: 21BA 3E12 CTR2IN: MVI A,12H
152: @1BC D312 OUT CMDPRT
153: J1BE DB19 IN DATAPRT
154: @1C@ 327601 STA TIME+1
155: 91C3 DB1@ IN DATAPRT
156: 21C5 327591 STA TIME
157: H

158: 91C8 C9 RET

15¢: ’

1€0: 21C9 END

yALARM REG 2
SMINUTES

y HOURS

READS CURRENT TIME AND
3 STORES

IT IN VARIABLE TIME
; SAVE COUNTERS 1 AND 2

y SET DATA POINTER TO
;COUNTER 1 HOLD REG.

sy TENTHS-OF-SECONDS

ySAVE IN B REG FOR LATER

1y SECONDS

;yTEST FOR ©

yGET TENTHS-OF~SECONDS
+TEST FOR 0

» SAVE CTR 2 AGAIN

; SAVE CTR 2 COMMAND

3 SET DATA POINTER TO
yCOUNTER 2 HOLD REG
sMINUTES

y HOURS

Figure 4-6. Sample 8080/8085 Time-of-Day Subroutines (Cont.)

A COOKBOOK APPROACH TO TIME-OF-DAY COUNTING

The following steps are given as a simple, easy-to-use guide to
the operation of the Time-of-Day Software. At the end of each
stepis areference to the line number appearing along the left side
of the program listing in Figure 4-6. Note that these programs
have been ¢oded to maximize clarity. Use of automatic Data
Pointer sequencing and special programming tricks would likely
result in more compact code. The program assumes that the
Am9513's Command port is located at address 12 (hex) and that
the Data port is at address 10 (hex).

4-7

SETTING THE CURRENT TIME

Subroutine SETTIME in the software listing sets the current time
and configures the Master Mode register and Counter Mode
register 1 and 2.

1. Set the Master Mode register as follows:

a) Set the Data Pointer register to point to the Master Mode
register by writing 17 (hex) to the Am9513 Command port
(Lines 15-16).

b) Write XXXX AA11 (binary) to the Am9513 Data port to set
the low order byte of the Master Mode register (Lines
17-18).

X = don'’t care bit
A = set to ‘1’ for Alarm function; set to ‘0 if Alarm will
not be used.

¢) Write 110X XXXX (binary) to the Am9513 Data port to set
the high order byte of the Master Mode register (Lines
19-20).

2. Set Counter 1's Mode register as follows:

a) Set the Data Pointer to the Counter 1 Mode register by
writing 01 (hex) to the Command port (Lines 24-25).

b) Write 3C (hex) to the Data port. This is the lower byte of
the Counter 1 Mode register (Lines 26-27).

¢) Write OF (hex) to the Data port. This is the upper byte of
the Counter 1 Mode register (Lines 28-29).

. Set Counter 2's Mode register as follows:

a) Set the Data Pointer to Counter 2's Mode register by
writing 02 (hex) to the Command port (Lines 33-34).

b) Setthe low byte of Counter 2's Mode register by writing 39
(hex) to the Am9513 Data port (Lines 35-36).

c) Write 00 (hex) to the Data port to set the upper byte (Lines
37-38).
. Counters 1 and 2 must now be loaded with 0 to condition the
Time-of-Day circuiiry. Set Load register i to § as foliows:
a) Setthe Data Pointer register to pointto Load register 1 by
writing 09 (hex) to the Am9513 Command port (Lines
42-43).

b) Write 00 (hex) to the Data port to set the lower byte of the
Load register (Lines 44-45).

¢) Write 00 (hex) to the Data port to set the upper byte (Line
46).

. Set Load register 2 to 0 as follows:

a) Setthe Data Pointer register to pointto Load register 2 by
writing OA (hex) to the Am9513 Command port (Lines
48-49).

b) Write 00 (hex) to the Data port to set the lower byte of the
Load register (Lines 50-51).

c) Write 00 (hex) to the Data port to set the upper byte (Line
52).

. Transfer the contents of Load registers 1 and 2 into Counters
1 and 2 by writing the “Load Counters 1 and 2” command (43
hex) to the Am9513 Command port (Lines 54-55).

. Set the current time’s seconds and tenths-of-seconds into

Load register 1 as follows:

a) Set the Data Pointer register to point to Counter 1's Load
register by writing 09 (hex) to the Am9513’'s Command
port (Lines 59-60).

Write the current time’s tenths-of-seconds to the Data
port in the format TO (hex), where T is a BCD number
between 0 to 9 representing tenths of seconds. Thé low
decade, used by the Time-of-Day prescaler, will usually
be setto 0. (If a 100Hz input frequency is selected the low
decade may be set to the current time’s tens-of-
milliseconds value.) (Lines 61-62)

Write the current time'’s seconds to the Data port. This
should be a number between 0 and 59 (decimal) in BCD
format (Lines 63-64).

. Set the current time’s hours and minutes, using a 24 hour
clock, into Load register 2 as follows:
a) Setthe Data Pointer register to point to Counter 2's Load
register by writing OA (hex) to the Am9513’'s Command
port (Lines 66-67).

b

-

C

-

b) Write the current time’s minutes to the Data port. This
number must be between 00 and 59 (decimal) in BCD
format (Lines 68-69).

c) Write the current time’s hours to the Data port. This
number must be between 00 and 23 (decimal) in BCD
format (Lines 70-71).

9. Load Counters 1 and 2 with the current time by writing the
“Load Counters 1 and 2" command (43 hex) to the Am9513's
Command port (Lines 73-74).

10. Set Load register 1 to O by repeating Step 4 (Lines 78-82).
11. Set Load register 2 to 0 by repeating Step 5 (Lines 84-88).

12. Start the counters by writing the “Arm Counters 1 and 2"
command (23 hex) to the Am9513's Command port (Lines
92-93).

SETTING THE ALARM TIME

1. Set Alarm register 1 to the seconds and tenths-of-seconds
Alarm time as follows:

a) Setthe Data Pointer register to point to Alarm register 1 by
writing 07 (hex) to the Am9513’s Command port (Lines
110-111).
Write the tenths-cf-seconds Alarm time to the Am9513’s
Data port in the format TO (hex) where T is a number
between 0 and 9 in BCD format representing tenths-of-
seconds. The lower decade will usually be set to 0. (When
a 100Hz input frequency is selected, the lower decade may
be set to the Alarm times tens-of-millseconds.) (Lines
112-113)
¢) Write the seconds component of the Alarm time to the Data
port. This should be a BCD number of 0 through 59 (deci-
mal) (Lines 114-115).

2. Set Alarm register 2 to the hours and minutes Alarm time as
follows:

a) Setthe Data Pointer register to point to Alarm register 2 by
writing OF (hex) to the Am9513’s command port (Lines
117-118).

b) Write the minute component of the Alarm time to the Data
port. This should be a BCD encoded number of value 0
through 59 (decimal) (Lines 119-120).

c) Write the hours component of the Alarm time to the Data
port. This should be a BCD encoded number of value 0
through 23 (decimal) (Lines 121-122).

3. If Master Mode register bits MM2 and MM3 are not already
both 1, set them to 1 now as follows: (These steps are not
shown in the software listing.)

a) Set the Data Pointer register to point to the Master Mode
register by writing 17 (hex) to the Am9513’'s Command
port.

b) Read the lower Master Mode register byte.

¢) Perform a logical OR between this byte and 0C (hex). This
sets bits 2 and 3 to 1.

d) Repeat step a) to reset the Data Pointer register.

e) Write the resultant byte from step c) to the Master Mode
register. This updates the lower byte of the register.

o
-~

READING THE CURRENT TIME

1. Save the contents of Counters 1 and 2 in Hold registers 1 and
2 by writing the “Save Counters 1 and 2” command (A3 hex)
to the Am9513’'s Command port (Lines 130-131).

48

2. Read the value saved in Hold register 1 as follows:

a) Set the Data Pointer register to point to Counter 1’s Hold
register by writing 11 (hex) to the Am9513’s Command port
(Lines 133-134).

Read from the Data port to retrieve the low order Hold

register byte. The upper decade contains the tenths-of-

seconds component of the current time. The lower decade

is used by the Time-of-Day prescaler. For 100Hz prescal-

ing, it is tens-of-milliseconds (Lines 135-137).

c) Read from the Data port again to retrieve the high order
byte. This is the seconds component of the current time

(Lines 138-139).

3. If the value read from Hold register 1 is 0000, Save Counter 2
again. Otherwise, go to Step 4. Counter 2 may be resaved
by writing A2 (hex) to the Command port (Lines 140-149).

4. Read the contents of Hold register 2 as follows:

a) Set the Data Pointer register to point to Load register 2 by
writing 12 (hex) to the Am9513’s Command port (Lines
151-152).

b) Read the minutes component of the current time by read-
ing a byte from the Data port (Lines 153-154).

c) Read the hours component of the current time by reading
another byte from the Data port (Lines 155-156).

b

=

SETTIME SOFTWARE USING MACROS

The programming examples given above can be further
simplified by using macros. The listing in Figure 4-7 is a macro-

*Z80 is a trademark of Zilog, Inc.
CP/M is a trademark of Digital Research, Inc.
AMDOS is a registered trademark of Advanced Micro Devices, Inc.

coded version of the subroutine SETTIME for the 8080, 8085 and
Z80.* This example provides a graphic illustration of the simplicity
of usage of the Am9513 macros. The full output code generation
of the macroassembler is shown in Figure 4-8 to illustrate the
convenience of using macros. This code expansion is slightly
different than the code in Figure 4-6 due to different counter
starting points and some software efficiencies.

CONSOLE DRIVEN CLOCK RUNS UNDER CP/M

A further example written in C is presented; it provides a simple
console-driven clock running under the CP/M* (ver 2.2)
compatible AMDOS® operating system. The resolution of the
clock is limited to one-second intervals since the Whitesmiths’ C
compiler unfortunately generates an I/O overhead of such a size
that the loading time of the program makes further accuracy
pointless.

The C example shown in Figure 4-9 illustrates the two ways of
setting the various modes of operation and register values de-
sired. The Master Mode register (master-reg in the listing) is
statically initialized since the various field values are known at
compile time. This declaration generates just two bytes of code
corresponding to the 16 bits of the Master Mode register.

The two Counter Mode registers are dynamically initialized field
by field (refer to the set modes procedure in the listing). Actually,
static initialization could be used, since the desired field values
are known at compile time (e.g., .base = BCD). For the purposes
of illustration, however, dynamic initialization is employed.

The program protects against reading the time while a carry is in
progress from counter 1 TC to the counter 2 input. Should the
value read from counter 1 be zero then the contents of counter 2
are resaved to avoid possible misreading of the time.

INCLUDE B:EQUS.MAC
INCLUDE B:808@.MAC

SETTIME:
MASTER
MODE_REG
MODE_REG
LOAD_REG 1,0
LOAD_REG 2,0
LOAD 1,2
LOAD_REG 1,TIME+2,1
LOAD_REG 2,TIME, 1
LOAD 1,2
LOAD_REG 1,0
LOAD_REG 2,0
ARM 1,2
RET

TIME: DB 2,0,0,0

H Coded for AmRES8Y/Am8ZE5S - also runs on Z80

TOD_1Q@HZ ,ENABLE ,ENABLE,F1,0,0F,BUS_8,0F,BCD
1,0fF_oC_TC,UP,BCD,MODE_DEF,F5,RISE,NO_GATE
2,ACT_HI_TC,UP,BCD,MCDEL_TEF,TC_NM1,RISE,NO_GATE

3y Current time hrs, min, secs, tenths

y Listed in Appendix 7
y Listed in Appendix 3

y Enable TOD counting

y Set the currernt time

3 Recall repeat reload values needed
y Time starts now

Figure 4-7. SETTIME Macro Listing for 8080, 8085 and Z80

- Macro expansion of SETTIME.MAC example -

2100° SETTIME:
MASTER TOD_1@QHZ,ENABLE,ENABLE,F1,0,CF,RUS_8,CF,BCD

2203 + DLAB SET TCD_100FZ
2eo7 + DLABR SET DLAB OR (ENAELE SEL 2
200F + DLAB SET DLAB Ok (ENABLE SEL 3)
@@BF + DLAB SET DLAB OR (F¥1 SHI 4)
@2RF + DLAB SET DLABR O (@ SHL &)

1@BF + DLAB SET DLAB Ok (OF SHL 12)
10BF + DLAB SET DLAB OR (@ SHL 13)
S@RF + DLAB SET DLAB OR (CF SEL 14)
DORF + DLABR SET DLAB CR (BCD SHL 15
¢1e0° 3E 17 + MVI A,CTRL_GR OR (MASTER_ SHL 3)
o102” 212+ oUT A_CTRL

2124° 3E BF + MVI A, LOW LLAB

@106° D3 19 + ouT A_DATA

gigs’ 3E D + MVI A, HIGH DLAB

@104 ° D3 19 QuT A_DATA

MODE_KEG 1,0FF_oOC_TC,UP,BCD,MODE_DFF,F5,RISE.NOC_GATE

2004 + DLAB SET CFF_0C_TC
20eC + DLAB SET LLAB OR (UP SHL Z)
201C + DLAB SET DLAB OR (BCD SHL 4)
223C + DLAB SET DLAB OR (MODE_DEF SHL 5!
gF3C + DLAB SET DLAB CR (F5 SHL 8)
@F3C + DLAB SET DLAB Ck (RISE SHL 12)
@F3C + DLAB SET DLAB OR (NO_GATE SHL 13
g1ec’ 3E 01 MVI A,1 OR /MODE_ SEL 3)
@12E° D3 12 oUT A_CTRL
6116° 3E 3C MVI A, LOW DLAB
9112° D3 18 oUT A_DATA
¢114° 3E OF MVI A, HIGH DLAB
2116° D3 10 ouT A DATA

MODE_REG 2,ACT_HI_TC,UP,BCD,MODE_DEF,TC_NM1,RISE,NC_GATE
2001 + DLAB SET ACT_HI_TC
2009 + DLAB SET DLAB OR (UP SHL 2)
2019 + DLAR SET DLAB OR (BCD SHL 4)
2039 + DLAE SET DLAB OR (MODE_DEF SHL 5}
2039 + DLAB SET DLAB OK (TC_NM1 SHL 8)
2039 + DLAB SET DLAB OR (RISE SEL 12)
2039 + DLAB SET DLAB OK (NO_GATE SHL 13
118" 3E 0z MVI A,2 OR {MODE_ SHL 3)
@11A° D3 12 CUT A_CTRL
@11C° 3E 19 MVI 4, LOW DLAB
@11E° D3 12 ouT A_DATA
0120° 3E 00 MVI A, HIGH LLAB
@122° D3 10 0uT £ _LATA

Figure 4-8. Macro Assembler Output
4-10

2124
2126°
2128°
@124°
g12¢c”’
012E°

2130°
9132°
2134°
2136°
2138°
21347

2040
2042
2043
213Cc”
@13E°

21407
2142°
01447
0147°
9149°
P14C”

P14E°
2150
21527
9155°
9157°
P154°

0040
0042
0043
@15C°
@15E°

3E
D3
3E
D3
3E
D3

SE
D3
3E
D3
3E
D3

SE
D3

3E
D3
3A
D3
34
D3

3E
D3
3A
D3
3A

3E

z
(]

4}
12
oe
10
20
10

oA
12
1)
10
1%}
10

43

12

@9
12

LOAD_

LOAD_

LOAD

+ 4+ +

LOAD_

017F°

190

7186 °

1e

@A
12

LOAD_

217D "

19

@17E’

10

43
12

LOAD

+ 4+ +

REG

REG

DLAER
DLAB
DLAB

REG

REG

DLAB
DLAB
DLAB

1,2

MVI A,1 OK (LOAD_ SEL 3)
CcuT A_CTRL

MYV I i, LOW 9

oUT A_DATA

MVI A, HIGH @

ouT A_DATA

2,0

MVI A,2 OR (LCAD_ SEL 3)
oUT A_CTRL

MVI A, LOW 2

0UT A_DATA

MVI A, HIGH @

ouT A_DATA

1,2 7+ Enable TOD counting
SET 40H

SET DLAB CR (1 SHL {2-1))
SET DLAB OK (1 SHL (1-1))
MVI A,DLAB

ouUT A_CTRL

1,TIME+2,]

MVI A,1 OR !LOAD_SHL 3)
ouUT A_CTRL

LDA TIME+2

ouT A_DATA

LDA TIME+2+1

oUT A_DATA

2,TIME,1

MVI A,2 OR {LCAD_ SHL 3)
ouUT A_CTRL

LDA TIME

oUT A_DATA

LDA TIME+1

oUT A_DATA

1,2 y Set the current time
SET 40H

SET DLAB Ok (1 SHL (2-1))
SET DLAB OR (1 SHL (1-1))
MVI A,DLAB

ouT A_CTRL

Figure 4-8. Macro Assembler Output (Cont.)

4-11

2169°
p162°
2164
9166°
g168°
@1€4A°

%%60:
6k
2170 "
g172°
g174”
2176°

2020
0022
2023
g17e’
174"
g17¢”

217D°

Macros:

ARM
LCAD
SET_

Symbols:

ACT_HI
A_CTRL
BUS 16
LLAE
F2
FALL
CATE_4
BL_NM1
EOLD_C
LOAD_
MODE_D
MODE_P
oF
FISE
SRC_3
TC_NM1
TOD_52
No

A>

3E
D3
SE
D3

SE
D3
co

o0

3E
D3

z
(o]

D3
3E
D3

29
12
00
1e
oe
10

3
D3

gA
12
1%
1@
00
10

23
12

20

CLEAR

LOAD_R

STEP

0091
2012
0001
2023
2gecC
2001
0029
0003
eo03
2021
0001
2005
2201
0000
0003
2000
0001

LOAD_REG

LOAD_REG

ARM

+

DLAB
DLAB
DLAB

+ o+

20 2¢

END SETTIME

DISARM
MASTER
S_MASK

ACT_LO
A _DATA
BUS_8
DOWN
F3
GATE_1
GATE S
HL_NP1
i
MASTER
MODE_G
MODE_S
OFF_L0
SETTIM
SRC_4
TC_T0G
T0D_60

Fatal error(s)

DPS
MCDE_R
S_TYPE

0005
go1e
0000
2000
220D
2006
000A
0002
0000
2002
0002
0006
0200
2100
0004
0002
0002

1,0
MVI
OUT
MVI
ouT
MVI
ouT

2,9

MVI
oUT
MVI
ouUT
MVI
ouT

1,2

SET
SET
SET
MVI
ouT

TIME:

DEMSAV
N_TYPE

ALARM1
BCD
CTRL_G
ENABIE
F4
GATE_2
HE_GAT
KL TC_
LE_GAT
MOTE _
MODE_J
MODE_V
OFF_0C
SRC_1
SRC_5
TIME
TOD_OF

A,1 OR
A_CTRL
A7 LOW
A _DATA

(LOAD SHL

2

&, HIGH @

A_DATA

2z
(o

3 Recall repeat reload

values needed

A,2 OR (LOAD_ SEL 3}
A_CTRL

A, LOW
A_DATA
A, HIGH
A_DATA

20H
DLAR OR
DLAB OR
A,DLAB
A_CTRL
RET

TE

FOUT
POINT

0009
00021
0144
0021
CCOE
eee
2006
2201
o7
0020
0003
peo7
P24
0001
2005
217D "
0000e

1]

2
y Time

(1 SHL
(1 SHL

Current
2,0

’
2, »2

HOLD_R
RESET

ALARM2
BINARY
DISABL
F1

F5
GATE 3
HL_GAT
HOLD
LL_GAT
MCDE_A
MODE_M
NC_GAT
ON
SRC_2
STATUS
TOD_1@
UP

starts now

time hrs, min,
secs, tenths

LD_ARM
SAVE

geo1
2000
0000
PQOE
2o0oF
geos
2004
2002
o205
0000
0224
oeoe
00092
0902
2002
0083
2001

Figure 4-8. Macro Assembler Output (Cont.)

4-12

/*
controll
®/

#include "B:9513DEFS.E"

#include

/*

This file provides an example usage of the 9513 System Timing
er device as a console clock. Whitesmiths® C example.

" " /* Listed in Appendix 6 */
B:9513RECS .H /¥ Listed in Appendix 1 */
Record structure definitions ~ Whitesmiths” C demands initialisers.

Notice that the master_reg definition generates only 2 bdytes of code,

as would the counter definitions if they were statically initialised.

*/
master_type master_reg /* This is a static initialisation */
= {TOL_10@HZ,DISABLE,DISABLE,F1,7,0FF,BUS_&,0FF,BCD} ;
channel_type count [6] /* array of the 5 counters or the 9513 */
= {0,0,0,0,0,0,9,0,0, /* dummy entry - index for countl is 1 */
2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
ﬂ.ﬁ,ﬁygygvevgvﬁvev
9,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0
} s
/* Command constants */
load = 0X43 ; /* LOAD counters 1 and 2 */
arm = 2X23 ; /* ARM counters 1 and 2 */
save = @XA3 ; /* SAVE counters 1 and 2 */
_main ()
BEGIN
int hrs_, min_ ;3
int temp , ac
ac = getfmt ("%2hi%:%2hi",shrs_,&min_) ;
if (ac < 2)
THEN
read_time () ; /* If XX:XX then set time, else read it */
else
BEGIN
set_modes () ; /% Mode registers */
set_loads (hrs_, min_, @) ; /* Lload registers */
output (CONTROL, &load) ; /% LCAD command */
output (CONTROL, &arm) ; /* ARM command */
set_loads (0,0,0) ; /* Load registers = @ for next reload */
read_time () ; /% Show if running *
END
END

Figure 4-9. A Console Driven Clock Written in ‘C’
4-13

set_modes ()

BEGIN
/* set master mode reg - recall static init */
point_to (CTRL_GROUP, MASTER) ;
output (DATA, Emaster _reg) ;
/* set counter 1 mode - recall dynemic init */
count[1] .mode.output = OFF_LO_TC ;
count[1) .mode.direction = UP 3}
count[1] .mode.base = BCD ;
count[l}.mode.control = MODE_DEF ;
count[1].mode.source = FS 3
count[l] .mode.edge = RISE ;
count[1] .mode. gate = NO_GATE ;
point_to (1, MODE H
output (DATA, &count[l] mode) 3
% set counter 2 mode */
count (2] .mode.output = ACT_HI_TC ;
count{Z].mode.direction = UP ;
count[2] .mode .base = BCD ;
count[2] .mode.control = MCDE_DEF ;
counth].mode.source = TC_NM1 ;
count[2] .mode .edge = RISE ;
count[2] .mode.gate = NC_GATE ;
point_to (2, MCDE_) ;
output (DATA,&count[2].mode) ;
END

set_loads (hrs, min, secs)

int hrs, min, secs

BEGIN
count[2].l0ad = (hrs*256) + min ;
count[1]) .10oad = secs * 256 ;
/* point and send counter 1 load
point_to (1, LOAD_) ;
output (DATA,&count[1].load) ;
/% point and send counter 2 load
point_to (2, LOAD_) ;
output (DATA,&count[2] .1oad) ;
END
read_time ()
BEGIN
unsigned hrs, min, secs, tenths ;
output (CONTRQL, &save) ; /% Issue the SAVE command
point_to (1, HOLD) 3
tenths = in (DATAT
secs = in (DATA) ; /% Read the Hold 1 register
if ((secs == @) && (tenths == 9))
THEN /* Wups - missed a carry bit
output (CONTROL, &save) ;
point_to (2, BOLD_) ; /% Now read correct Hold 2 reg
min = in (DATA) H -
hrs = in (DATA) ;
putfmt ("At the bell it was%3hi:%2hi:%2hi\n",hrs,min,secs) ;
END

*/

*/

*/

*/
*/

Figure 4-9. A Console Driven Clock Written in ‘C’ (Cont.)
4-14

point_to (channel, reg)

BEGIN
data_type data_ptr ;
data_ptr.element = reg ;
data_ptr.group = channel ;
data_ptr.cmnd_code = @ j
output (CONTROL,&data_ptr) ;
END

output (port, word)
unsigned port, *word ;

BEGIN
unsigned sent ; /* This output routine has & Trace dump */

out (port, (*word % 256)) ;
if (port == DATA)

THEN

BEGIN
out (port, (*word / 256)) ;
sent = *word ;

END

else

sent = *word ¥ 256 ;

/* Delete the next statement to suppress dump
- it shows what you send to the Am9513 */

/¥ trace off

putfmt (“Cutput %2hi%6hi\n",port, sent) :
*/
END

A>

Figure 4-9. A Console Driven Clock Written in ‘C’ (Cont.)
4-15

Chapter 5
Event Counting

EVENT COUNTING

Event counting applications find wide use in industrial control,
measurement and telecommunications circuits. These applica-
tions are characterized by the need to count transitions on some
input signal for a specified duration of time.

In a typical Am9513 event counting interface, the input signal is
connected to the counter’s source input. The counter is gated on
for a controlled period of time either through the hardware gate
input or by software command. In some operating modes the gate
input can be used to save and reset the counter. The counter will
usually be programmed to count up and the Load register will
usually be set to 0 to facilitate resetting the counter.

Figure 5-1 shows a simple minimum system for event counting.
The counter is operated in Mode D, a repetitive counting mode
with no hardware gating. The counter’s source input is driven by
an external signal which is assumed to provide an active-going
edge for each event to be measured. The event accumulation
process starts when the counter is loaded with zeroes and armed.
After the desired measurement interval, the software can disarm
the counter to prevent further count accumulation, save and read
the accumulated count, or load the counter with 0 to prepare for a
new accumulation cycle. The OUT pin of the counter is connected
tothe RST 7.5 input of the host Am8085A microprocessor in order
to generate an interrupt if the maximum count of 65535 binary or
9999 BCD is exceeded. Note that in Mode D, if the maximum
count is exceeded, the counter will continue accumulating counts
modulo the maximum count. If the counter is operated in Mode A
it will stop after exceeding the maximum count until a new ARM
command is issued to it.

One limitation of this event counting technique is the need for
software timing loops to control the sampling period. Figure 5-2
eliminates this requirement by utilizing level gating control on the
event counter and using another counter to control the gate input
and hence the sampling period. The event counter is operated in
Mode E and the period counter is operated in Mode D or Mode J
for either 50/50 or variable duty cycle output waveforms. A 50/50
waveform (Mode D) can be used to alternate between two event
counters, one gated with an active-low signal and the other gated

with an active-high signal. A variable duty cycle waveform is most
useful when only one event counter is used. In either application,
a high signal on the period counter’s output interrupts the host
microprocessor through RST 5.5. The processor’s interrupt
routine should read the accumulated event count and reset the
event counter to 0. An RST 7.5 interrupt will be issued if the event
counter reaches the maximum count. If the maximum count is
exceeded, the counter will continue to accumulate modulo the
maximum count.

The previous example has eliminated the need for software
timing loops but still requires the host processor to reset the event
counter after each sampling period. This operation can be per-
formed automatically by the hardware gate input if the event
counter is operated in Mode O. Figure 5-3 shows the counter
interconnections required for this operating mode. The sampling
period counter is operated in Mode J and generates an assym-
metric output at fixed intervals. Both the low and high times output
by the period counter should be longer thant the execution time
for asingle pass through the software used to perform steps 1 to 4
below. The event counters’s gate is driven by this signal. On each
active-going gate edge, the event counter’s contents are trans-
ferred into the Hold register. On the first active-going source
edge after the gate edge, the event counter is reloaded from the
Load register. The event counter will start counting on the se-
cond source edge after application of the gate edge. Because
the gate edge controls saving the accumulated count and reset-
ting the event counter, software intervention is not required. The
processor can access the results of the most recent event ac-
cumulation cycle by setting the Data Pointer and reading the
Hold register contents as described in the following steps.

1. Testthe period counter’s output by reading the Status register.

. Set the Data Pointer to point to the counter’s Hold register.
This step loads the Prefetch Latch with the Hold register's
contents.

. Read the Hold register.
. Test the period counter’s output again.

. Am8085A

ADO-AD7

(—

AlS

10/MEM

Eincan

RST 7.5

Am9513A/Am9513

D0-D7

WR

_ EXTERNAL

RD SOURCE EVENT
COUNTER INPUT

out
cs

t

15 0
I 000X l XXXXI 001X] 1001 |

Counter Mode Register

MOs-624

Figure 5-1. Simple One-Counter Event Counting Configuration

5-1

If the period counter’s output was low in step 1 and high in step 4,
an active-going gate edge was applied to the counter during
execution of the software. This could potentially cause a faulty
read operation for either of two reasons. First, parameters
TGVWH and TWHGYV in the Am9513 data sheet may have been
violated while setting the Data Pointer. See Appendix A for de-
tails. Secondly, in an 8-bit bus environment (Master Mode bit
MM13 = 0) the gate edge may have split the Hold register values
read, with the low byte read reflecting the old Hold register con-
tents and the high byte read reflecting the new updated Hold
register contents. Therefore, if the period counter output
made a low to high transition between steps 1 and 4, steps 1
through 4 should be repeated. Note that this software must
be non-interruptible in order to guarantee that the execution of
steps 1 and 4 will be less than half of the period of the period
counter’s output.

Note that the event counter is reloaded on the first count source
edge after application of a gate edge. In most applications, a
value of 1 should be reloaded rather than 0, in order to force
agreement between the number of count sources applied and the
accumulated count. In other words, since the event counter is
reloaded by the first source edge, the counter contents after this
first pulse should be 1, not 0. Special care must be taken in

applications where a possibility exists that no source pulses will
be issued to the counter between active-going gate edges. As an
illustrative example, consider a counter whose contents are some
accumulated value K. When a gate edge is applied to the counter,
this value K is transferred to the Hold register. The counter
contents at this point are unchanged (i.e., are equal to K). In a
normal count cycle, on the next source edge, the counter would
be reloaded from the Load register and would start counting
events. Consider the situation where no source edges occur
before a second active-going gate edge is applied. The counter
contents are still K since no reload has occurred, and the Hold
register will once again be set to K. A value of K has been saved,
even though no source pulses were applied during the sampling
period. It can be seen that proper operation of this gate-initiated
save/reload operation requires a minimum of 1 active-going
source edge between active-going gate edges. Some applica-
tions will be able to guarantee this requirement of at least one
source edge per sampling cycle by virtue of the signal being
measured. Other applications can avoid reading false values by
issuing a LOAD command to the counter and then reading the
Hold register after at least two sampling periods have elapsed. If
the Hold register contents equal the Load register contents, no
source pulses are being received by the counter.

Am8085A

Am9513A/Am9513

OSCILLATOR p—={ PRESCALER }p—

DO0-D7 ADO-AD7

L% H 10k

RSTS5.5

L—{ SOURCE
PERIOD
COUNTER OUT

EXTERNAL
EVENT

INPUT
SOURCE

EVENT
COUNTER OUT
GATE

15 0

I 000X I XXXXI 011X l 0010 I

Period Counter Mode Register

15

0

l 101X IXXXX l 001X I 1001 I

Event Counter Mode Register

MOS-625

Figure 5-2. Event Counting with Hardware Gating

AmB085A Amg513A/Am513
i -
3 OSCILLATOR |—=| PRESCALER
— ‘
PERIOD
WR WR counter OYT
RD RD
EXTERNAL
EVENT
— INPUT
A5 - l U
SOURCE
PR EVENT
IO/MEM counter OUT
GATE
RST7.5

15

0

15 0
fOOOX I XXXX‘ 011X—I 0001]

I 110X I XXXXl 100X I 1001 I

Period Counter Mode Register

Event Counter Mode Register

MOS-626

Figure 5-3. Event Counting with Hardware Read and Reset

INDUSTRIAL CONTROLLER — A Z8000 EXAMPLE

A certain manufacturer of widgets has provided the following part
specification for the large-volume supply of a microprocessor-
based controller system:

“The handling system is constructed around a chain conveyor.
Unsorted widgets are loaded onto one end of the conveyor at
non-equal intervals, transported along and unloaded at the far
end for shipping. Widgets without an identifying mark must be
knocked off the conveyor by an existing hammer mechanism,
previously manually activated. A small area is available to inspect
the widget for the identifying mark a short distance from the reject
hammer. The identifying mark fluoresces under the action of
ultra-violet illumination of a specific wavelength, otherwise the
local area will remain in darkness. The identifying mark, if pre-
sent, is guaranteed to appear within a defined area.”

“The chain conveyor speed is variable within a small known
range. Widgets are presented such that a widget does not ap-
proach the inspection area until after the preceding widget has left
the rejection point. To achieve compatibility with current manual
inspection the action of the hammer must be described in terms of
chain links. The hammer lies A links beyond the inspection point
and must be activated for B links duration to achieve correct
rejection. The hammer should not be active outside this period.
Sensing of chain conveyor speed must be achieved by non-
contact means due to safety regulations.”

“Readouts must be provided of current total reject number and
the number of rejects per hour. The readings will be reset every 8
hours or so. Widget throughput is around 600 per hour.”

Minimizing the component count prompted the system designers
to use a single Am9513 device to provide all the counting and

timing functions required. The implementation is illustrated in
Figure 5-4. The following points discuss the various areas in
more detail.

1. Chain Speed Sensor. Unfortunately, due to the chain con-
struction, all available non-contact sensors produce a noisy
output in addition to an identifiable edge at the start of each
link. A mask pulse is thus required of known maximum dura-
tion since the chain speed is known to lie over a small range.
Calculations show that synchronization will always be
achieved within 20 links, an acceptable power-up time.

This function is realized by operating counter 3 in mode F. An
active edge on the link sensor enables counter 3 to count
down from the value stored in the Load register, further gate
inputs (link sensor outputs) being ignored until the end of
count, or TC. At TC the counter waits for a new gate input to
repeat the cycle, in normal operation the commencement of
the next link. The clock input to counter 3 is defined to be a
suitable internal source, depending on the chain conveyor
speed. The TC output of counter 3 cycles at once per link,
generating the “link clock” for the system.

. Widget Mark Sensor. Due to the large area within which the
fluorescent mark may appear, the optical sensor produces a
fairly slow pulse in the presence of noise and 60Hz and 120Hz
interference. For this reason, the sensor output is routed via a
high-gain squaring amplifier to an integrator which is reset at
17msec intervals. The integrator cancels most of the interfer-
ence while providing a clear output of a sensed mark. This
output is gated as the integrator reset is applied, generating a
single reject pulse if the mark is identified.

The reset clock is provided by the FOUT output, driven from an
appropriate internal source.

3. Hammer Pulse. To achieve correct operation of the hammer, a

delayed one-shot is required, triggered from the gated reject
pulse. Counter 4 is set to operate in mode L and the reject
pulse applied to the gate input, thus starting the count. The
counter 4 clock input is programmed to TCn-1, the “link clock”
output produced by counter 3. The Load register contains the
value A, and the Hold register contains the value B. Counter 4
TC then provides the hammer output of duration B links after a
delay of A links.

. Time-of-Day Clock. A suitable clock is provided by counter 1
and counter 2 (see time-of-day clocking description).

. Reject Accumulator. The spare counter 5 is used as a reject

accumulator, finally freeing all CPU intervention with the
Am9513 operation save for periodic readings to update the
displays, etc. Counter 5 is operated in mode A as a simple
counter. The source input is programmed to be TCn-1, which
is the hammer output of counter 4 providing one count per
reject. If counter overflow occurs then the returned count will
be the load register value, nominally zero.

Notice that the entire implementation uses only four external
connections to the Am9513. The listing in Figure 5-5 provides a
Z8000 Assembly implementation example.

Am9513

18msec
cLOCK
Four .
N inssn J SAMPLE
SOURCE 1> V 1>
\ \ wank | SOUARER wammgn INTEGRATOR COMPARATOR
WIDGET LD]] /
CHAIN SPEED
ONE PULSE CHAIN CONVEYOR
m EACHCHAIN L SENSOR
| — LINK
N \
N o
g 1 \
/ 1
ONE PULSE \‘ LOAD 4
m EACH REJECT { l, HOLD 4 _l HAMMER PULSE
= TRIGGER

r SENSOR O/P
MASK (TC3)

MOS-673

Figure 5-4. Am9513 Industrial Controller

5-4

MODULE “WIDGET";
% Coded for AmZE000

p 3 This file provides a short industrial controller example using the
% Am9513 System Timing Controller as a multi-purpose timing and counting

% element.
% Warning: Due to the nature of this file it has not been fully tested.
% This file is part of the Am9513 Software Applicetions Manual,
% 1s not copyright and you can store it on what you like.
CCNST
A_DATA = @FFD8H , ¥ Am9513 data port
A_CTRL = OFFDAR , ¥ Am9513 control port
CHAIN_MASK = 5000 , ¥ Mask pulse for chain sensor noise
A_LINKS = 42 , % Activate hammer a_links after inspection
B_LINKS = 4 3y ¥ ... for b_links duration
INCLUDE “B:EQUSZ.ZSC” 5 % Listed in Appendix 7
’

INCLUDE “B:Z8@@@MAC.ZSC” % Listed in Appendix 5

ORIGIN O@@QH ;
WIDGET:
% Reset and initialise the Am9513.
RESET 5 ¥ Reset, Load all, set 1€ bit dbus, set data ptr
MASTER TOD_10¢HZ ,DISABLE,DISABLE,F5,1¢,0N,BUS_1€,0N,BCD ;
CALR SETTIME } % Get the time of day clock set up

MODE_REG 3,ACT_HI_TC,DOWN,BCD,MODE_DEF,F4,RISE,BE_GATE_N 3
LOAD_REG 3,CHAIN_ MASK HE 3 Chain speed sensor

MODE_REG 4,TC_TOGGLE, DOVN BCD,MODE_JKL,TC_NM1,RISE,HE_GATE_N ;
LOAD_REG 4,A_LINKS

HOLD_REG 4, B LINKS ; % Reject hammer output

MODE_REG 5,0FF_OC_TC,UP,BINARY ,MODE_ABC,TC_NM1,RISE,NO_GATE ;
LOAD_REG 5,90 7 % Widget reject counter

CLEAR 3 3} ¥ TC outputs must start low for sync
CLEAR 4 H

APM 1,2,3,4,5 3 ¥ Time and action starts now

RET H

Figure 5-5. AmZ8000 Assembly Listing for Controlier
5-5

SETTIME:
% Set up channels 1 and 2 to time of day mode

MODE_REG 1,0FF_oC_TC,UP,BCD,MODE_DEF,F5,PISE,NO_GATE;
MODE_REG 2,ACT_HI_TC,UP,BCD,MODE_DEF,TC_NM1,RISE,NO_GATE;

LOAD _REG 1,0 % @ here is a constant

LOAD_REG 2,8
LOAD 1,2 7 % Enable TOD counting

-e s

LOAD_REG 1,TIME(2) % Current time value - notice no I flag reqd.

LOAD_REG 2,TIME

.o e

LOAD 1,2 3 # Set the current time
LOAD_REG 1,0 H
LOAD_REG 2,0 3 % Recall repeat reload values needed
RET ;
READ_IT:

% Routine to get current system status.

p4 .
% Exit: R1 holds time XX:XX (hrs:min) in 4 x BCD format
% R2 holds current total reject #

SAVE 1,2,5
POINT 1,HOLD_

% Fix the data

.o wewe wo we

IN RO ,A_DATA % Read secs, tenths

TEST RO

JR NZ,READ_IT1 % Read was ok

SAVE 2 y % We might have missed & carry bit
FEAD_IT1:

POINT 2,EOLT_ H

IN R1,A_DATA + ¥ Read hrs, mins

POINT 5,HOLD_

IN R2,A_DATA i % Read current reject total

RET H

% Required start time hrs, min, secs, tenths
TIME: BYTE: ?9H,15H,0,¢ i % Abtout the time we get to work (9:15am)
END.

A>

Figure 5-5. AmZ8000 Assembly Listing for Controller (Cont.)
5-6

Chapter 6
Frequency and Baud
Rate Generation

FREQUENCY GENERATION

The Am9513 is capable of synthesizing frequencies with a high
degree of precision. For square wave outputs, the counter's
Mode register should be set for a TC Toggled output. In this
configuration, the output will generate a complete cycle for every
two TCs the counter generates. Thus, if the spacing between TCs
is controlled by the Load register, the TC Toggled output period (in
number of source pulses) will be twice the Load register contents.

A 50% duty cycle output can be generated by operating the
counter in Mode D. In this mode, the time between TCs is con-
trolled by the Load register contents. The Hold register is not used
in controlling the counter. Figure 6-1 shows an Am8080A/8085A
routine for configuring Counter 3 as a baud rate generator.

Some applications require square wave outputs with variable
duty cycles. This can be achieved by operating the counter in
Mode J. In this mode the reload sources alternate between the

0100 00010 ORG 100H
0002Z0 B
00030 FEQU'S FOR AMPSG13 FORTS
00040 H
0012 = 00050 CMDFRT EQU 12H 3 COMMAND FORT
0010 = 00060 DATAFRT EQU 10H iDATA PORT
00070 H
00080 H
00090 H
00100 FTHIS SUBROUTINE CONFIGURES COUNTER 3 ON
oollio FTHE. AMPUL3 AS A BAUD RATE GENERATOR. THE
00120 FINTERNAL OSCILLATOR FREQUENCY IS DIVIDED
00130 FDOWN BY TWICE THE CONTENTS OF VARIAELE
00135 FUFACTOR' AND A SQUARE WAVE OQUTPUT X8
00137 $ GENERATED .
00140 H
00150 EAUD S
00160 FSET COUNTER MODE AND LOAD REGCISTERS.
00170 H
0100 3EEO 00171 MVI Ay DEOH FENABLE DATA FOINTER
0102 D312 o0L72 ouT CMDFRT 3 SEQUENCING.
0104 3E03 00180 MVL Ay 03H $SET DATA FOINTER TO
0106 D312 00190 auT CMDFRT 3COUNTER 3 MODE REG.
0108 3E22 00200 MVI Ay 22H SLOWER BYTE
010A D310 ooz2io auT DATAFRT
010C BEOE 002220 MVI Ay OEH FUFFER BYTE
0L10E D310 00230 auT DATAFRT
00240 H
00250 $SET COUNTER 3 LOAD REG.
00260 H
0110 3A2301 00270 LDA FACTOR FLOWER BYTE
0113 D310 00280 ouT DATAFRT
0115 3A2401 00290 L.DA FACTOR+1 PUFPPER BYTE
0118 D310 00300 ouT DATAFRT
00310 H
00320 LOAD AND ARM COUNTER
00330 H
011A 3E44 00340 MVL Ay 44H $LOAD COUNTER 3 COMMAND
011C D312 003%0 ouT CMDFRT
011E 3E24 00360 MVI Ar24H $ARM COUNTER 3 COMMAND
0120 D312 00370 auT CMDFRT
0122 C9 00380 RET
00390 H
00400 FINTERNAL OSCILLATOR FREQUENCY WILL BE
00410 FDIVIDED BY TWICE CONTENTS OF
00420 FVARLABLE 'FACTOR' .
00422 $
0123 1000 00430 FACTORS DW 16 $DIVIDE BY 32
00432 ¥
00440 3A CRYSTAL OF FREQUENCY 4,915200
00450 PMHZ . WHEN DIVIDED EY 32 WILL YIELD
00460 FAN QUTFUT FREQUENCY OF 9600 X 16 =
00470 $18E3600 HZ. FOR 92600 BAUD SERIAL
00480 3 COMMUNICATIONS o
00490 H
01235 003500 END

Figure 6-1. Baud Rate Generation with the Am9513 in an Am8080A/8085A System

AmB8085A Am9513A/Am9513
COUNTER out RauENeY

RD RD

WR WR

: > ADDRESS =

AB-A15 DECODE jo—Q Cs

ADO-AD7 < > DO-D7
RST7.5
I I I I Am74LS86 —J—_—|—
e (4 04
| 15 o
I rODOX l XXXXI 011X l 0010 I
- Counter Mode Register
MOS-627
Figure 6-2. Updating Load and Hold Register Values in Real-Time
contents to adjust the period of the next output cycle. Updating
the registers by means of an interrupt routine ensures the register
Amg513A/Am9513 contents are stable when the counter reaches TC and reloads
from the register.
SOURCE - - ,

SOURCE The Am9513 has provisions for synchronizing a counter’s output
COUNTER our frequency to an external signal. To accomplish synchronization,
SYNG GATE the counter shoulid be operated in Mode Q, as shown in Figure
SIGNAL 6-3. For normal counter operation the gate input is held active.

15 0

lLEVEL Xl XXXX I 101X I XXXX]

Counter Mode Register
MOS-628

Figure 6-3. External Synchronization of Frequency
Counters: Method 1

Load and Hold registers. This allows one polarity of the output to
be controlled by the Load register contents and the other output
polarity to be controlled by the Hold register. Fine resolution of the
output duty cycle can be achieved by adjusting the relative values
of the two registers.

In some applications itis necessary to adjust the output frequency
in real time. Figure 6-2 shows a circuit which generates an inter-
rupt on each edge of the output waveform. The host microproces-
sor's interrupt routine would update the Load and/or Hold register

6-2

While the gate is active, the counter will count to TC repeatedly.
When it is necessary to synchronize the counter to an external
signal, the gate should be driven inactive, which will stop count-
ing, and then driven active again. On the active-going gate edge,
the current counter contents will be saved in the Hold register.
This value may be used by the microprocessor as an indication of
how out-of-sync the counter was. On the first source edge after
the gate edge, the counter will be reloaded from the Load register.
Counting will start (assuming the gate remains active) on the
second source edge after the gate edge. It can be seen that the
gate edge effectively resets the counter, synchronizing it to the
gate signal.

Synchronization of the counter to an external event can also be
accomplished by issuing a LOAD command to the counter. This
will cause the Load or Hold register contents to be transferred into
the counter. The selection of whether the Load or Hold register is
used as a reload source depends on the counter's operating
mode. Note that data sheet parameters TEHWH, TWHEH,
TGVWH and TWHGV must be met to ensure successful syn-
chronization. See Appendix A for further details.

Applications which need to generate Frequency-Shift Keying

outputs can achieve this function by operating the counter in
Mode V. This mode uses the level of the gate input to select the

Am9513A/Am9513
SOURCE |
J—L SOuRCE LOW-PASS FSK
COUNTER out FLTER . T out
BIT GATE
STREAM
15 0
[000X 1 xxxxI 11X l X010]
Counter Mode Register
MOS-629

Figure 6-4. Frequency Shift Keying

counter reload source for each TC. For Frequency-Shift Keying
(FSK) applications, the serial bit stream should be input to the
counter’s gate and the counter output periods (as set by the Load
and Hold register contents) should be selected to be less than the
shortest high or low time on the incoming bit stream. The FSK
output can be shaped by a low-pass filter to remove high order
harmonics. The output can then be transmitted over a telecom-
munications link or stored on an audio tape recorder for a low-cost
data acquisition system. Demodulation of the FSK signal can be
performed using standard techniques.

A

m

Many systems require an asynchronous data link that is typically
implemented using an Am9513 System Timing Controller and
Am8251/Am9551 USART. Since these systems are often
shipped without accompanying CRT consoles, they may be set at
an arbitrary baud rate to cater for common terminals, usually by
means of a buffered bank of dip switches and associated address
decode logic. A system capable of automatically sensing the
attached terminal baud rate at power-up would save not only
switch adjustment by the end user (frequently after dismantling
the processor) but also reduce component count, board space
and assembly effort at the expense of a few lines of code. Such an
example usage of the Am9513 is presented here, using about 160
bytes of code (Am8080/Am8085).

The principle of the baud rate determination algorithm is unre-
fined but effective. The Am9513 baud rate generator is set to
provide the maximum rate anticipated, perhaps 19,200 baud. The
system user first enters a carriage return, thus allowing the termi-
nal rate to be measured by counting the pseudo characters
received by the system within a short time frame. Some of these
characters will be flagged with framing errors by the Am8251/
Am9551, although these errors may be safely ignored for our
purposes.

The pseudo characters seen by the system, for a given terminal
baud rate and asynchronous character format, may be accurately

6-3

predicted in advance. For example, a 4800 baud terminal will
produce the four-character sequence (78)(7E)(00)(7E). How-
ever, if the number of pseudo characters received is used as the
primary parameter the measurement becomes much more toler-
ant to skew and variation in the number of bits per word. In
practice, many other characters in addition to a carriage return
provide correct measurement. The “capture range” of characters
entered may be increased by reducing the number of allowable
baud rates.

Am8080/Am8085 SAMPLE LISTING

The Am8080/Am8085 code sequence shown in Figure 6-5 ini-
tializes the Am8251/Am9551 and the Am9513 to provide an
asynchronous data link at 19,200 baud. The received characters
are decoded and the new baud rate time constant calculated by
using an indexed sequential search. To reduce code, the entire
initialization of the Am9513 and Am8251/Am9551 is then recalled
using the calculated baud rate time constant. Notice that this
practice avoids problems with asynchronous changes of the
Am9513 load register when counting in close proximity to TC.

AmZ8000 SAMPLE LISTING

The Z8000 code sequence shown in Figure 6-6 performs the
same action as the previous example with the additional facility of
changing the Am8251/Am9551 Mode control word for differing
baud rates. For example, at 9600 baud frequently 10 bits per byte
are utilized compared to 11 bits per byte at 110 baud.

For both examples, successful decoding of the baud rate is
indicated by the appearance of the prompt (“)”) on the users
terminal.

Additional baud rates may be allowed by entering the appropriate
data in the two data tables (TABLE and RATES). Reducing the
number of baud rates available will allow a greater number of
characters to give correct operation, although the program is
designed to receive a carriage return. As listed, the 11 standard
baud rates between 75 and 19,200 baud are allowed.

-e

A_DATA
A_CTRL
F_DATA
E_CTRL
FX_RDY
TX_EDY
MAXTIM
PESETU
MODE
COMND

BAULD:

BAUD_1:

RAUD_2:

FAUD_3:

EAUD_4:

Coded for Am8¢8@/Am8@85 - also runs on Z28¢

EQU @D8H 7y Am9513 date port

EQU @DAE y AmS513 command port

EQU @DCH ; AmE251/Am3551 data port

EQU 2DDH 7y AmE251/AmS551 commarnd port

EQU 2 y Am8251/Am9Y551 rx ready mask

EQU 1 ; AmEZ51/Am9551 tx reedy mesk

EQU 5¢ee y Time for worst-case receptiorn cr, 75 beud
EQU 040H y Official Am82zE1/AmSE581 software reset

EQU @CEH y 2 stop, /1€, no parity, & dete ®its

EQU Q37H y tx/rx enable, d4dtr, rts

INCLUDE B:EQUS.MAC y Listed in Appendix 7
INCLUDE E:8080.MAC y Listed in Appendix &

; The system monitor callis “BAUL” to set up :console ic¢

LHLD RATES y Start with max rete kunowr tc program
CALL INIT y Set up Am9513, Am8251,/Am9551
IN B_CTRL y Fead console status

ANI RX_RDY

JZ BAUD_1 + Wait for 1st character

MVI E,© 3y lZero character counter

LXI B,MAXTIM 7 Initialise timer

DCX B y Move and test timer status
MOV A,B

CRa C

Jz BAUD_3 y Timeout, go decode data

IN B_CTRL 3 Kead console status

ANI RX_RDY

JZ BAUD_2 y Wait for a character

IN B_DATA t+ Discard pseudo character

INR E 3 Adjust cheracter counter

JMP BAUD_2 7 REepeat

3y Perform serial index search for reqd baud rate const
’

; Entry: E holds # pseudo characters received

MOV ALE

LXI H,TARBLE-1
LXI D,RATES-2

Byte pointer, decode tabtle
Word pointer, rate constant tebdble

INX D y Move the pointers

INK D

INK H

CMP M 3 Check the decode entry
JNC BAUD_4 y Not found yet

Figure 6-5. Am8080/8085 Auto Baud Rate Generator
6-4

BAUD_5:

INIT:

3 DE points to the required time constarnt

LTAX D

MOV
INX
LDAX
MOV
CALL

L,A
D

D
H,A
INIT

’

Put time constant in HL

Re-program both Am9513 and Am8251,/Am9551

y Print a log-on promr . to indicate success

IN
ANI
Jz

MVI
ouT
RET

“o wo we wo wo we

B_CTRL
TX_RDY
BAUD_5

4,>°
B_DATA

.
’
.

’

Read console status
Wait till ready - good practice

Send the prompt

Reset and set Am9513 channel 1 to baud rate generator.

Mode: TC toggle, Mode D, count bin/down, SRC 1

Note: For AmS513 crystal use F1. SEC 1 used here for testing.
Reset and set Am8251/Am9551 to usval async uart

Entry: HL contains baud rate time constant

MODE_REG 1,TC_TOGGLE,DOWN,BINARY,MODE_DEF,SRC_1,RISE,NC GATE

RESET
POINT 1,L0AD_
MOV A,L

OUT A_DATA

MOV ASH

OUT A _DATA

LOAD 1

ARM 1

MVI
oUT
ouT
ouT
MVI
ouT
MVI
ouT
MVI
ouT
IN

RET

A,0
B_CTRL
B_CTRL
B_CTRL
ATRESETU
B_CTRL
AMODE
B_CTRL
A;COMND
B_CTRL
B_DATA

.
?

e we we

y Safe now to set

.o -e

Set up counter 1 LOAD register

Turn on the baud rate generator
up the Am8251/Am9551 uart

Ensure no sync problems

Am8251/Am9551 software reset
Set uart mode
Set uart command register

Clear any rubdish around

Figure 6-5. Am8080/8085 Auto Baud Rate Generator (Cont.)

6-5

TABLE:

;3 Conversion table — used to calculate an index from the
3 number of pseudo characters received by the system.
y Entries may be adjusted for convenience of use.

DB 2 y 19200 baud, nominally 1 char: ie match if < 2
DB 4 3 9€0% nom 2
DB 5 y 4800 nom 4
DB 7 3y 2402 nom 5
DB 9 y 1820 nom 8
DB 13 y 1200 nom 9
DB 23 y 600 nom 18
DB 45 7 S00 nom 34
DB 75 y 150 nom 68
DB 1928 7y 110 nom 93
LB 255 y 75 nom >130@
RATES:
3 Baud rate constant conversion teble. The indexed entry
; corresponds to the value required for the Am9513 LOAD
; register if a 2.4576MHz crystal is used. Notice the one to
; one correspondence between the entries in RATES ard TABIE.
’
s Calculate new rates (or different crystals) by:
H
H entry := ((crystal/32)/baud_rate)
’
) All values in Hz. The factor 32 comes from 1€ mode in
; the Am8251/Am9551 uart and /2 from the Am9513& TC toggle mode.
Dw 4 7 192080 baud
W 8 y 9600
W 16 7 4800
DW 32 y 2400
DW 43 y 1800
] | 64 i 1200
Dw 128 y 600
DW 256 y 320
Dw 512 y 150
Dw 698 y 110
DW 1024 y 75
END BAUD
A>
Figure 6-5. Am8080/8085 Auto Baud Rate Generator (Cont.)

AmZ8000 SAMPLE LISTING

The Z8000 code sequence shown in Figure 6-6 performs the
same action as the previous example with the additional facility of
changing the Am8251/Am9551 Mode control word for differing
baud rates. For example, at 9600 baud frequently 10 bits per byte
are utilized compared to 11 bits per byte at 110 baud.

For both examples, successful decoding of the baud rate is
indicated by the appearance of the prompt (“)”) on the users
terminal.

Additional baud rates may be catered for by entering the appro-
priate data in the two data tables (TABLE and RATES). Reducing
the number of baud rates available will allow a greater number of
characters to give correct operation, although the program is
designed to receive a carriage return. As listed, the 11 standard
baud rates between 75 and 19,200 baud are catered for.

%

This file allows auto baud-rate sensing of an attached terminal

% by looking at the data returned from a user entered carriage return.
% It assumes the use of an AmS513, Am&251/Am9551 combination.

CONST
A_DATA
A_CTRL
B_DATA
B_CTRL
PX_RDY
TX_RDY
MAXTIM
PESETU
MODE_1
MODE_2
COMND
INDEX
TIMER
COUNT

INCLUTE
INCLUDE

BAUD:

BAUD_1:

BAUD_2:

BAUD_3:

BAUD_4:

[T A T T T T (| I

“B:E

@FFD8E
ZFFDAR
2FFDCH
@FFDDH
1,

2,
5000,
0402H,
oCEH,
ODEH,
P37H,
k1,
R2,
RL3S

QuUsz.zsc”

,
1
’
’

2
%
%
Z
)3
b3
%
%
%
%
Z
3
i3
%

‘B:28@MOMAC.ZSC "’

AmG513 data port

Am9513 command port

Amg251/Am9551 data port

Am8251/Am9551 command port
Am8251/Am9551 rx ready bit
Am8251/Am3551 tx ready bit

Time for worst-case reception cr, 75 taud
Cfficial AmB251/Am9551 software reset
2 stop, /16, no parity, 8 data bits

2 stop, /16, odd parity, 8 data bits
tx/rx enable, dtr, rts

Common index for TABLE end RATES
Timer for worst case reception

Input psuedo character counter

% Listed in Appendix 7
$ ¥ Listed in Appendix £

% The system mcnitor calls “BAUD” to set up consocle io

CLR
CALR

IN
BIT
JR

CLR3B
LD

DEC
JR

IN
BIT
JR

IN
INCB
JR

-e we

1D

INC
CPE
JE

INDEX
INIT

RZ,B_CTRL
RO,EX_RDY
ZR,BAUD_1

CCUNT
TIMER,MAX

TIMER,1
ZR,BAUD_3

R®,B_CTRL
RO,RI_RDY
ZR,BATD_2

RO,E_DATA
COUNT ,1
BAUD_2

TIM

Start with max rate known to program
Set up Am9513, Am&251/Am39:51

22 203

Read console status

“eo we we

Wait for 1st character

Zero character counter
Initialise timer

-o we

Move and test timer status
Timeout, go decode dats

IO e AR

.o e

Read console status

we wo we

Wait for a character

Discard pseudo character
Ad just character counter
Repeat

2030 3R W

e we wo

% Perform serial index search for reqd baud rate const
CCUNT holds # pseuvdo characters received

% Entry:
INDEX,-2
INDEX,2

y % Word index

3y % Move the index

COUNT,TABLE(INDEX) ;5 % Check the decode entry

NC,BAUD_4

;7 % Not found yet

Figure 6-6. Z8000 Auto Baud Rate Generator

6-7

BAUD_5:

INIT:

% INDEX is offset for both baud rate constant and Am&251/Am9551
% command byte

CALR INIT ; % Re-program both Am9513 and Am8251/Am9551
% Print a log-on prompt to indicete success
IN R2,R_CTRL

)
BIT R@,TX_RDY ’
JR ZR,BAUD_5)

% Read console status
% Wait till reedy - good practice
1DB RLE, >

CUT B_DATA,R®
RET

% Send the prompt

“e wo we

Reset and set Am9513% channel 1 to baud rate generator.

Mode: TC toggle, Mode D, count bin/down, SRC 1

Note: For Am9513 crystal use Fi. SRC 1 used here for testing.
Reset and set Am8251/Am9551 to usual async uvart

3R A0 IR 3R IR AR

Entry: INDEX contains baud rate time constant index

RESET $ % Not neccessary if the Am951Z already set
MODE_REG 1,TC_ TOGGLE DOWN,BINARY,MODE_IEF¥,SKC_1,RISE,NC_GATE;
PCINT 1, LOAD

1D RZ, RATES(INDEX) y % Get rate constant

ouT A_DATA RO
LOAD 1

ARM 1

e wo we

% Safe now to set up the Am8251/Am3551 uart

CLR RO

OUT B_CTRL,RO
OUT B CTRL,RE
OUT B_CTRL,RO
1D R@,RESETU
OUT B_CTRL,R@
LD R@,TARLE(INDE
OUT B_CTRL,RO
1D RZ,COMND
OUT B_CTRL,RO

IN RZ,B_DATA
RET

% Ensure no sync problems

% Am8251/Am9551 software reset
) 3 2 Set uart mode
Set uart command register

% Clear any rubbish around

o o we JQ wo >d s we wo we e e

Figure 6-6. Z8000 Auto Baud Rate Generator (Cont.)
6-8

TABLE:

RATES:

END.

A>

Conversion table - used to calculate an index from the
% number of pseudo characters received by the system.

% Notice that a different mode byte may te defined for

% each separate baud rate - 11¢ baud should vse 11 bits.

BYTE: 2, MODE _1 19209 baud, nominally 1 char.
BYTE: 4, MODE_1 9600 nom 2 Match < 2
BYTE: 5, MODE_1 4800 nom 4

BYTE: 7, MODE_1 240¢ nom 5

BYTE: 9, MODE_1 180¢ nom &

BYTE: 13, MODE 1 1200 nom 9

BYTE: 23, MODE_1
BYTE: 45, MODE 1
BYTE: 75, MODE_2
BYTE: 108, MODE 2
BYTE: 255, MODE_2

600 nom 1&
300 nom 34
150 nom €8
112 nom 93
75 nom >12¢

3R IR IR IL IR IR IV IR AR 3P

e e we we o we We we we we wo

% Baud rate constant conversion table. The indexed entry

% corresponds to the value required for the Am8513 LOAD

% register if a 2.4576MHz crystal is used. Notice the one to
% one correspondence between the entries in RATFS and TABLE.
%

% Calculate new rates (or different crystels) bdy:

% entry := ((crystal/32)/baud_rate)

z

% All values in Hz. The factor 32 comes from /1€ mode in

% the Am8251/Am9551 uart and /2 from the Am9513 TC toggle mode.
WORD: 4 3 % 19200 baud

WORD: g ; % 9600

WORD: 16 y % 4800

WORD: 32 y % 2400

WORD: 43 y % 1809

WORD: 64 s % 1200

WORD: 128 y % €00

WORD: 256 y % 300

WCRD: 512 y X 159

WORD: 698 y % 110

WORD: 1224 ;y % 75

Figure 6-6. Z8000 Auto Baud Rate Generator (Cont.)
6-9

Chapter 7
One-Shot Applications

ONE-SHOT OPERATING MODES

The Am9513 is capable of providing a variety of retriggerable and
non-retriggerable one-shot functions, usually with no external
logic. One-shot timing functions may be triggered in one of three
manners: by a software ARM command, by an active-going gate
edge, or by an ARM command followed by a gate edge.

Triggering by a software ARM command, shown in Figure 7-1a, is
provided by Mode A. This triggering mode is particularly useful
when the one-shot’s firing is to be controlled by the microproces-
sor, independent of any external signals.

Triggering by a hardware gate edge, shown in Figure 7-1b, is
provided by Mode F for non-retriggerable one-shot operation,
and by Mode R, for retriggerable one-shot operation. This trigger
type is useful when the one-shot is to be repetitively fired by an
external signal, independent of the host microprocessor. When
using this triggering option, the next count cycle can be triggered
after the counter reaches TC. Infact, if the TC output is fed back to
the counter’s gate, as shown in Figure 7-2, the counter will essen-
tially free-run after being started by an external gate pulse. The
counter can trigger off either edge of the TC pulse in this config-
uration. Figure 7-2 shows the TC output being fed back through

wn—____/(

TRIGGER

GATE

|
ARM I\
DATA BUS _—{ commano | /"
—
PROGRAMMABLE
~ DELAY —1
TC ’
out
i
a) Mode A
TRIGGER

TC
out

PROGRAMMABLE
DELAY

/L

b) Mode F, R

¥ I

TRIGGER

"\

GATE

< ARM >
DATA BUS COMMAND

|
|
|
|
T

TC
out

PROGRAMMABLE
DELAY

—

/L

I

c) Mode C, O

-+

MOs-630

Figure 7-1. One-Shot Trigger Options

7-1

Am9513A/Am9513

SOURCE

EXTERNAL
GATE

.
L

GATE

SOURCE

TC

COUNTER out

15

0

IEDGEX[XXXX I XX1X I XX01 I

Counter Mode Register

MOS-631

Figure 7-2. TC Feedback Connection

an external OR gate. Applications using an 8-bit data bus can use -

the AND function provided by the auxiliary Gate inputs as a
negative logic OR, eliminating the need for an external gate.

The third trigger type, shown in Figure 7-1c, will fire the one-shot
when a software ARM command and a hardware gate edge are
applied in that order. This triggering operation is useful in ap-
plications which need the microprocessor to qualify when trig-
gering can occur but which actually trigger the one-shot from
an external signal.

In addition to the three triggering modes, there are three different
types of one-shot output waveforms that may be generated by
the Am9513, as shown in Figure 7-3. The type of output wave-
form obtained is selected by the particular counting mode used
and the programming of the Output Control field in the counter’s
Mode register.

The strobed or TC one-shot output generates an active pulse for a
one clock cycle duration when the counter reaches TC. This
waveform is useful for triggering other counters or can be used to
set, clear or toggle flip-flops to generate more complex signals.

The second one-shot output, called the traditional output, is use-
ful only when gate edge triggering is used. The traditional output
goes active following application of the gate edge and remains
active until the counter reaches TC. This waveform is the type
found on traditional linear one-shots, hence its name.

Although the Am9513 requires an external flip-flop to generate
the traditional one-shot output, it is capable of directly generating
a more general-purpose signal which has a quasi-traditional out-
put as a special case. This more general signal is the third
waveform type and provides a delayed-pulse one-shot. After the
counter is triggered, the counter output remains inactive for some

7-2

programmable delay. The output then goes active for a pro-
grammable period. Note that both the delay to the start of the
pulse and the pulse width are separately programmable. With the
minimum delay to start-of-pulse of 1 clock cycle programmed, the
delayed-pulse one-shot signal becomes similar to the traditional
one-shot output. The only difference between these modes is that
in the traditional one-shot, the output goes active on the gate
edge and in the delayed-pulse one-shot, the output goes active
on the second source edge after the gate edge.

In some applications it is desirable to restart the timing sequence
from the initial value after the counter starts counting but before it
reaches TC. This operation, called retriggering in this document,
effectively increases the time to TC. The strobed one-shot mode
may be operated in a retriggerable mode in the Am9513 without
external hardware. With the addition of a few external devices,
retriggerable traditional and delayed-pulse one-shot waveforms
can be generated.

A matrix can be constructed illustrating the combination of trigger
types, output waveforms and retriggering options available with
the Am9513. Such a diagram is presented in Figure 7-4. Since the
combination of triggering on an ARM command and retriggering
by an external gate is not a reasonable operating configuration, it
is not included in the chart.

One-Shot Count Sequences

Because the Am9513 counters always reload on the rising TC
edge and always count on the trailin TC edge, one-shot count
sequences may be different from what users might intuitively
expect. Figure 7-5 shows a typical non-retriggerable one-shot
count sequence. Initially the counter contents are 5. When a gate
edge is applied, the counter begins counting. On the count source

TRIGGER

STROBED
(TC) OUTPUT

SoURcE W

L—v— PROGRAMMABLE DELAY ——————=

[\

%— PROGF ABLE DELAY

TRADITIONAL
OuUTPUT

_

|
(GATE EDGE t
TRIGGERING ONLY) 1

LOAD

PULSE OUTPUT

PROGRAMMABLE

-——

/

REGISTER DELAY

|
DELAYED- |
I

A

PROGRAMMABLE

—

L

HOLD
REGISTER DELAY

MOS-632

Figure 7-3. One-Shot Output Options

Retrigger Option Non-Retriggerable Retriggerable
Trigger Option ARM Gate ARM and Gate Gate ARM and Gate
Output Options
Strobed Output Mode A Mode F Mode C Mode R Mode O
Traditional Output Mode A* Mode F* Mode C* Mode R* Mode O*
Delayed-Puise Output Mode G Mode L Mode |

*Additional hardware required.

Figure 7-4. Matrix of Am9513 One-Shot Modes

edge that occurs when the counter contents are 1, the counter
goes into TC and reloads itself from the Load register, which
contains the value 6. On the trailing TC edge the counter decre-
ments the 6 to 5 and then awaits a subsequent gate edge. Note
that because the counter counts on the trailing TC edge, although
the Load register contents were 6, in fact only 5 counts occur
between the gate edge arfd the end of TC. Another more subtle
pointis that on initialization the user should load the Load register,
execute the LOAD command and then issue a STEP command
before arming the counter. The STEP command will increment/
decrement the counter contents by 1 to mimic the reload-and-
count-once operation which occurs on TC. This ensures that 5,
not 6, will be in the counter when it is triggered by the gate edge
and ensures that the time from the first gate edge to the first TC
will be the same as the time from subsequent gate edges to
subsequent TCs.

Count Sequences may also differ from what a user would expect
when a counter is operated in a retrigger mode (Modes N, O, Q
and R). In these modes, each active-going gate edge applied to
the counter will transfer the counter contents into the Hold regis-
ter. On the first source edge following the gate edge, the Load

register contents will be transferred into the counter. Counting will
occur on the second source edge after the gate edge. Note that
the first gate edge applied to the counter will both start the counter
and trigger a save/reload sequence. Accordingly, there will be a
two count difference in retriggerable one-shot count sequences
vis-a-vis non-retriggerable one-shot sequences. Figure 7-6
shows a retriggerable one-shot count sequence and can be com-
pared to the non-retriggerable sequence shown in Figure 7-5.
Since the retriggerable counter uses the first source edge after
the gate edge to reload the counter, it reaches TC two clock
cycles later than a non-retriggerable counter with the same Load
register contents.

Non-Retriggerable One-Shots

The non-retriggerable strobed one-shot is the most basic one-
shot timing mode. In this mode the output goes active for one
clock cycle when the counter reaches TC. This mode is gener-
ated by selecting a TC output in the counter’s output control field.
For hardware gate triggering of the one-shot process, counting
Mode C or F should be used. In Mode C, a new ARM command
followed by a gate edge must be issued to the counter to start

W AVAVAVAVAVAVAVAVAVAN

COUNTER
CONTENTS

2 € €3 €5 €0 € G

GATE

/\

TC
OUTPUT

/\

MOS-633
Figure 7-5. Timing Waveforms for Typical Non-Retriggerable One-Shot
e : X XXX XX
GATE ’ \
TC ’ \
OUTPUT
MOS-634

Figure 7-6. Timing Waveforms for Typical Retriggerable One-Shots

each one-shot cycle. In Mode F, the counter will perform one-shot
cycles each time a gate edge is applied without requiring a new
ARM command for each count cycle. In both Modes C and F, if a
gate edge is applied during the count cycle before TC goes active,
the edge is disregarded. Mode A provides the third variation of
strobed one-shot timing. In this mode, the software ARM com-
mand is used to trigger the one-shot operation and the hardware
gate input is disregarded. Strobed one-shot functions are useful
in marking a particular point in time. The output will often be used
to set, clear or toggle flip-flops.

With a minimal amount of external logic, an Am9513 counter can
emulate a non-retriggerable, linear one-shot generating the tradi-
tional output, as shown in Figure 7-7. The advantages of digital
one-shots over their linear counterparts are digital one-shot’s
high resolution, stable operation and their ability to easily inter-
face with microcomputers. In the circuit shown in Figure 7-7, the
counter is programmed for down counting in Mode F. An active-
low TC output mode is selected. When a gate edge is applied to
the counter, the flip-flop clears and the counter starts counting.
When TC is reached, the output goes low for one source period,
setting the flip-flop. The time that the flip-flop’s Q output is high is
controlled by the Load register contents. For aLoad register value
of K, the output high time is given by (K—2). Note that for this
circuit the output goes active after application of the gate edge

7-4

and is driven inactive by a source edge. The uncertainty in the
relationship between the gate and the source gives a maximum
count error of 1 count in the output active duration. (This uncer-
tainty arises because the gate edge may occur anytime between
shortly after a source edge and shortly before the next source
edge.) Use of large count values can reduce the percentage of
uncertainty to minimal levels. The delayed-pulse output mode
can be programmed to drive the output active on the second
source edge after the triggering gate edge. In addition to remov-
ing the uncertainty regarding the output active duration, this
alternative method has the added advantage of not needing
external logic.

Delayed-pulse one-shots can be triggered by software ARM
command (Mode G), by hardware gate edge (Mode L) or by any
ARM command followed by a gate edge (Mode I). For all these
modes, the counter’s output control field should be programmed
for a “TC Toggled” output (CM2-CM0 = 010). If a TC output is
programmed (CM2-CMO = 001 or 101) a dual-pulse one-shot
function may be generated. Here, rather than toggle the output on
each TC, a one clock period wide pulse is output. The delay from
the trigger to the first TC is controlled by the initial counter con-
tents, which are usually set by a reload from the Load register at
the end of a previous timing cycle. The delay between the two TC
pulses is controlied by the Hold register contents.

Retriggerable One-Shots

Retriggering of one-shots provides a means to extend the time to
TC after the one-shot has started timing and is accomplished by
applying a retrigger signal to the counter. The retriggering may be
done by hardware means, using the gate input, or by software
means, using the LOAD command.

Retriggerable one-shots can be initially triggered by a gate edge
(in Mode R) or by an ARM command followed by a gate edge (in
Mode O). Note that the triggering gate edge also retriggers the
counter; see the “One-Shot Count Sequences” section of this
chapter for additional details. In both of the above modes, appli-
cation of a gate edge once the counter is counting will extend the
time to TC by reloading the counter from the Load register. (The
counter contents are also saved in the Hold register before the
reload operation, but this is not relevant to the retriggering opera-
tion.) In either mode the counter can be usedin a TC output mode

(CM2-CMO = 001 or 101) to generate a strobed output, or may be
used with a flip-flop as shown in Figure 7-7 to generate a tradi-
tional output.

One-shot functions may also be generated by software without
hardware retriggering. A counter operated in Mode A will perform
one count cycle each time it is armed. If the ARM command is
viewed as a software trigger, this mode operates like a software
triggered one-shot. LOAD commands can be issued to a counter
operating in Mode A to extend the time to TC. Here the LOAD
command behaves like a software retrigger. In fact, the LOAD
command can be used with any of the one-shot modes discussed
earlier, excluding the delayed-pulse one-shot mode, to act as a
software retrigger, extending the time to TC. The delayed-pulse
one-shot mode cannot be retriggered with a LOAD command,
because it will reload from the location to be used on the upcom-
ing TC rather than the last TC, which is not a retrigger function.

Am9513A/Am9513

SOURCE SOURCE

COUNTER

GATE GATE

out

TRADITIONAL
ONE SHOT

15

N
ol

OUTPUT

0

l 110X] XXXXI 001X I 0101 I

Counter Mode Register

MOS-635

Figure 7-7. Generating a Traditional One-Shot Output

7-5

Chapter 8
Software Considerations
and Program Examples

SOFTWARE CONSIDERATIONS AND PROGRAM
EXAMPLES

A device with the versatility of the Am9513 is necessarily com-
plex. This software application section simplifies the program-
mer’s view of the Am9513 and facilitates quicker understanding
and the implementation of the facilities provided. Hardware con-
siderations are generally not discussed; indeed, with few excep-
tions they are deliberately excluded. For a detailed discussion of
system implementation with the Am9513, the reader is referred
to earlier chapters of this manual.

Example Languages

Software application notes generally provide specific examples
of code written in one or more languages, structured as much to
illustrate the purpose of the code clearly as well as to provide
compact, working programs. Most languages have drawbacks,
a fact that is of little importance in an application note, although it
is desirable that examples should be presented in both high-
level and assembly-level languages.

This software application note presents high-level constructs
and examples in the C language, which now is seeing a fairly
wide acceptance and is currently supported on systems
supplied by Advanced Micro Devices. C is a block-structured
language that, although lacking in features such as strong type
checking, provides excellent bit-manipulation facilities in record
fields, allowing such statements as:

#define OFF 1
Master. FOUT__gate = OFF;

This statement is part of a record initialization that flags the
FOUT gate as being disabled. The “#define” statement assigns
the value “1” to the constant identifier “OFF”. The bit field
“.FOUT__gate” of the record structure “Master” is then as-
signed the value of the identifier “OFF”, i.e., “1”. A similar
Z8000* assembler listing might take the form:

CONST OFF = 0X1000 ; % AMD Mnemonics

LD R4,OFF ;
OR R4, MASTER ;
LD MASTER,R4 H

Throughout this note several C terms have been redefined.
Many programmers are familiar with languages other than C,
possibly of the Pascal or PL/X variety, so the following defini-
tions have been used in an attempt to achieve some common
ground:

#define BEGIN

#define END

#define RECORD struct
#define THEN

8-1

These definitions allow the use of the type identifier “RECORD”
for structure definitions rather than the normal C type identifier
“struct”.

Assembly language examples are presented using Am8080/
Am8085, Z80 and Z8000 source mnemonics having formats
compatible with the AMD or Zilog assemblers. Macros are used
wherever it is felt that they aid the programmer, mostly within the
Amg513 command structure. The macros are generally op-
timized, such that better code can not be generated by hand,
and mostly employ strict parameter checking (eliminating ex-
cuses for not using them). For example, to save counters 3, 4
and 5 would be accomplished by the statement:

SAVE 34,5

Code generated by this statement would be (Am8080/Am8085):

Mvi
ouT

A,OBCH
CONTROL

Macros are presented for setting the Counter registers and the
Master register and, although the experienced Am9513 user
may find them of dubious use, the novice will appreciate the
code generated. For example, to set the Master register, the
following command may be used:

MASTER TOD_50HZ,DISABLE,DISABLE,GATE_1,
11,0N,BUS__8,0N,BCD

The following code sequence will be generated (Am8080/
Am8085):

Mvi A7H

OUT CONTROL ; Pointto Master reg

MvI A61H

ouT DATA ; Send Low command byte
Mvi A,8BH

ouT DATA ; High command byte

By examining the code generated (as above) by the macro as-
sembler, the user may gain quick understanding of the usage of
the Am9513. (Notice that the above assembly code does not use
intermediate storage records for the data. Use of assembly lan-
guage often implies high efficiency or compact code is re-
quired.) C examples have been compiled to Am8080/Am8085
code using the Whitesmith’s C compiler and Z8000 code using
the AMD C cross compiler, both running on the AMD System

8/8. All executable Am8080/Am8085 and Z80 target code has
been tested using an AMD System 8/8 with an Am95/5032
ROM/EPROM board installed, supporting an Am9513 with con-
trol and data ports decoded at I/O addresses DAH and D8H,
respectively. All executable Z8000 code has been tested using
the above system with an Am96/4116 Z8000 bus master card
installed.

FUNCTIONAL DESCRIPTION

(See Chapter 1 for detailed description.)

The Am9513 includes five general purpose 16-bit counters. A
variety of internal frequency sources and external pins may be
selected as inputs for individual counters with software select-
able active-high or active-low input polarity. Hardware gating of
each counter is available. Each counter provides either pulsed
or level as well as tri-state and fixed low outputs. The counters
can be individually programmed to count up or down in BCD or
binary modes. The accumulated count may be read without
disturbing the counting process. Any of the counters may be
internally concatenated to form an effective counter length of up
to 80 bits.

Associated with each counter are a Load register and a Hold
register. The Load register automatically reloads the counter to
a predefined 16-bit value, thus controlling the effective count
period. The Hold register acts either as a second 16-bit Load
register for complex waveform generation or as a 16-bit storage
register to save count values without disturbing the counting
process, thereby permitting the host processor to read inter-
mediate count values.

Two counters have additional Alarm registers and comparators
with associated logic to allow operation in a 24-hour time-of-day
mode with alarm facility. Clocking may be either in real time or
programmed over the full dynamic clocking range of the
Am9513.

Each of the five counters has a dedicated output pin that may be
programmed to provide a variety of outputs. General-purpose
counter inputs are available for configuration under software
control, allowing dynamic reassignment of inputs with the facil-
ity, for exampie, to use a single gate pin simuitaneously as a
clock input to one counter and as a gate input to another.

HARDWARE CONSIDERATIONS
Prefetch

In order to minimize the read access time to internal Am9513
registers, a prefetch circuit is used for all read operations
through the Data port. Following each read or write operation
through the Data port, the Data Pointer register is updated to
point to the next register to be accessed. Immediately following
this update, the new register data is transferred to a special
prefetch latch at the interface pad logic. When the user performs
a subsequent read of the Data port, the data bus drivers are
enabled, outputting the prefetched data on the bus. Since the
internal data register is accessed prior to the start of the read
operation, its access time is transparent to the user. In order to
keep the prefetched data consistent with the Data Pointer, pre-
fetches are also performed after each write to the Data port and
after execution of the “Load Data Pointer” command. The fol-
lowing rules for Data port Transfers should be heeded:

1. The Data Pointer register should always be reloaded before
reading from the Data port if a command other than “Load

8-2

Data Pointer” (point_to or POINT) was issued to the
Am9513 following the last Data port read or write. The Data
Pointer does not have to be loaded again if the first Data port
transaction after a command entry is a write, since the Data
port write will automatically cause a new prefetch to occur.

Operating modes N, O, Q, R and X allow the user to save the
counter contents in the Hold register by applying an active-
going gate edge. If the Data Pointer register had been point-
ing to the Hold register in question, the prefetched value will
not correspond to the new value saved in the Hold register.
To avoid reading an incorrect value, a new “Load Data
Pointer” command should be issued before attempting to
read the saved data. A Data port write (to another register)
will also initiate a prefetch; subsequent reads will access the
recently saved Hold register data. Many systems use the
“saving” gate edge to interrupt the host CPU. In such sys-
tems, the interrupt service routine should issue a “Load Data
Pointer” command prior to reading the saved data.

2.

Memory Mapping

Associated with the Am9513 are four parameters known collec-
tively as read/write recovery times. Certain coding sequences
can violate these parameters in sometimes non-obvious ways.
Consider a Motorola 6800-based system, employing memory-
mapped input/output. Reading the hold register on counter 4
may be accomplished by the following code sequence:

LDAA #14 Point to counter 4 hold
STAA CONTROL

LDX DATA Read the register

STX RESULT Store the data

Notice that the operation “LDX"” performs two 8-bit reads from
location DATA and DATA+1 using two consecutive clock cycles.
For a 1250ns read recovery time the maximum system clock
frequency allowable without violating the read recovery time is
680kHz. This is lower than many system clocks in use, so the

following code sequence may be used to avoid this limitation:

LDAA #14 Point to counter 4 hold

STAA CONTROL

LDAA DATA read low byte

STAA RESULT reversed order for
compatability with above

LDAA DATA+1 read high byte

STAA RESULT

The equivalent multiple write operation is even more restrictive:
an 1800ns write recovery time limiting the system clock to
500kHz unless the separate data byte write technique is
adopted.

Similar considerations apply for memory-mapped Am8080/
Am8085 systems. Notice that in the case of normal I/O mapped
Z80 and Z8000 systems, the block input/output instructions may

also violate the read/write recovery time parameters at very high
system clock rates. Using the normal input/output instructions
avoids violations without recourse to the use of wait states.

DATA MODEL

The first task of the programmer is to construct a data model of
the Am9513 around which the applications software may be
draped. A topdown, structured approach is adopted and al-
though for purposes here the data model need not be optimized
either for space utilization or for access time, both aspects are in
fact efficiently implemented.

Figure 8-1 shows the data model to be adopted, which should be
contrasted with Figures 8-2, 8-3 and 8-4 depicting the hardware
structure being modeled. Notice that the Command register and
Data Pointer register do not appear in the data model.

The simplicity of Figure 8-1 illustrates that the Am9513 is singu-
larly well suited to this approach; removing extraneous internal
hardware aspects focuses the attention of the programmer on
the salient details.

C provides a facility called “typedef” for creating new data type
names, similar to the “TYPE” facility in other languages. For
example, the declaration

typedef int LENGTH;

makes the name ‘LENGTH’ a synonym for ‘int’. The type
‘LENGTH’ can be used wherever the type ‘int’ can be used.
Similarly, the two record definitions of Figure 8-1 can be re-
placed by their respective type names; indeed, the definition of

typedef RECORD (count__type
unsigned int

unsigned int

typedef RECORD (master—type
status__type
unsigned int
unsigned int

) channel__type ;

channel__type

) Am9513_type ;

/* Single counter set */

mode ;
load ;
hold ;

/* Am9513 chip set */

master ;
counter [5] ;
status ;
alarm—1 ;
alarm—_2 ;

Figure 8-1. Software Structure of the Am9513

SOURCE 1-5 5
GATE 1-5 7 —
X1
16-BIT COUNTER 5
e OSCILLATOR R OENCY SO ER COUNTER 5 LOGIC GROUP |———= oUTS
INPUT
FOUT ~——— 4@3‘31083:‘015: SELECT COUNTER 4 LOGIC GROUP |——— ouT4
LoGIC
8-BIT 6-BIT 8-BIT
commano =] bata STATUS COUNTER 3 LOGIC GROUP |——— OUT3
REGISTER POINTER REGISTER
L
R T L —
peeoer = BUFFER L] 16-BIT MASTER COUNTER 2 LOGIC GROUP |———= oOUT2
7
0850815 ~—F AND MUX T MODE REGISTER
I " I 1
WR ———— BUS | POWERON | COUNTER 1 LOGIC GROUP |———= OUT1
D ————| INTERFACE
B e CONTROL
‘;':’_‘s’ vee vss -

Figure 8-2. General Block Diagram

8-3

src —3/-]
GATE —3/o]
FREQ —3/~]

TeN—1 —fed

INPUT 16-BIT LOAD REGISTER
SELECT

LOGIC
!

ouT
CONTRO!

COUNTER
CONTROL
LOGIC

I | —

16-BIT MODE REGISTER

16-BIT COUNTER 1

out
N

16-BIT HOLD REGISTER

—

TOR

16-BIT

I

16-BIT ALARM REGISTER

srC —]
GATE —3/e] eyt 16-BIT LOAD REGISTER
El
FREQ —/-—: LoGIC our
TN-1 —/— l CONTROL
COUNTER
16-BIT COUNTER
LoGIC) ouT
!] "
16-BIT MODE REGISTER 16-BIT HOLD REGISTER

Figure 8-3. Counter Logic Groups 1 and 2

the ‘Am9513__type’ uses the type ‘channel_type’ as a field to
identify the array of five counters on the Am9513. Notice from
Figure 8-1 that each counter (or channel—type) consists of three
registers known as the Mode, Load and Hold registers. Addi-
tionally the Mode register itself is further defined via a typedef
in Figure 8-6 to consist of a series of bit fields. The sum of the
field widths of these bit fields is 16, that is, the Mode register is
16 bits wide.

It must be emphasized that a C typedef declaration does not
create a new type in any sense (unlike the TYPE declaration in
other languages); it merely adds a new name for some existing

nortahla and
PO G

)
type. The use of typedef's makes C programs more portable an

1S Makes L proegrams more

significantly improves readability.

An application using an array of 20 Am9513 devices with an
access pointer may be declared as shown in Figure 8-5a.

Am9513_type

/* recall we have a new “type*/
Am9513[20], /* data structure for 20 chips*/
Am9513_ptr ; / access pointer */

Figure 8-5a.

Notice that C uses array subscripts commencing with zero; the
third Am9513 device would be referred to by Am9513[2].
Should the reader prefer, all arrays can be declared with a
dummy entry, such that all zero indices may be ignored as
shown in Figure 8-5b.

Am9512 type
AmM9513[21], /* 21 devices, ignore device #0 */

Figure 8-5b.

8-4

Figure 8-4. Counter Logic Groups 3,4 and 5

The third Am9513 device may now be referenced by the form
Amg513[3]. Throughout this software application note the first
form (zero subscript allowed) will be employed except where
clearly stated otherwise.

The following discussions of the data model fields (the various
hardware registers on the Am9513) are accompanied by exam-
ples of usage. The examples refer to the model, which is trans-
ferred to the hardware device via some input/output operations.
Such operations are discussed with the data pointer sequencing
facility description, and are omitted from most other C examples
for clarity.

Users of other languages shouid find the data model and C
examples useful as an aid to understanding the Am9513. As-
sembly language examples are included for additional clarity.

COMMAND REGISTER

The Command register provides direct control over each of the
five general counters (via the Control port) and controls access
to the counter registers (via the Data port) by updating the Data
Pointer register. Commands are instruction codes to the
Am9513 and as such are not part of the data model. They are
generally used in the form:

eg ()
BEGIN
int reset = OXFF, /* Ccode */

load_—all_counters = 0X5F;
output (CONTROL, & reset);
output (CONTROL, & load_—all__counters);
END

Notice that the variables “reset” and “load—all__counters” are
declared AUTO (LOCAL in some languages) such that they re-
side on the stack while the procedure “e.g.()” is current. The
operation of the procedure “output (X,Y)” will be described later
in this section; suffice to say that the address of the variable “Y”
to be output (sent to the Am9513) is passed as one parameter
and the destination port “X” (Control or Data) of the Am9513
as the other. Thus the variable “Y” is called by reference (e.g.,
& reset) and the destination port “X” is called by value (e.g.,
Control).

; Z80 Macro Assembler code
ENTRY:
RESET
RET

; Macro simplicity

The “Command Description” section later in this chapter ex-
plains the detailed operation of commands available with exam-
ple usage.

DATA POINTER REGISTER

The Data Pointer register is a write-only register controlled
solely by a command with the structure illustrated in Figure 8-6.
The detailed hardware format of the register is irrelevant for
purposes here since the data pointer command provides all in-
formation necessary. As a command, it does not appear in the
data model.

/* Load data ptr register command */

typedef RECORD (unsigned group :3;
unsigned element :2;
unsigned cmnd_—code :3;
)data__type ;

Figure 8-6. Load Data Pointer Command Structure

The data pointer command selects which internal register is to
be accessible via the Data port and consists of a constant com-
mand code (000), a 2-bit element field and a 3-bit group field.
(See Page 1-5 for hardware description.) Random access to any
available internal register location can be accomplished by sim-
ply sending the appropriate data pointer command to the Control
port and then performing a Data read or write. Sequential ac-
cess to groups of internal registers may be performed by send-
ing the appropriate enable and data pointer commands to the
Control port and performing multiple Data reads and/or writes.

For example, random access to the Load register of counter 4
may be performed as shown in Figure 8-7. Sequential access to
the hold registers of all five counters is performed as shown in
Figure 8-8. Suitable C input/output routines for an 8-bit data bus
may be defined as shown in Figure 8-9.

point_to (channel, reg)
unsigned int channel, reg ;

eg()
BEGIN
point_to (4,LOAD) ;
Amg513.counter[3].load = input(DATA) ;
END

BEGIN
data_type data_—ptr ; /* local command structure */
data_ptr.group = channel ;
data__ptr.element = reg ;
data_ptr.cmnd—code =0 ;
output (CONTROL,&data_ptr) ; /* send Load Data Pointer Command */
END
; Z80 Macro example
STORE DEFS 2 ; Destination of data
ENTRY:
POINT 4,LOAD__ ; Pointto counter 4 LOAD register
LD C,DATA ; Setup port address
LD HL,STORE ; Set up data destination
INI ; Low byte of LOAD register
INI ; High byte of LOAD register
RET

/* C example */

/* set up Data Pointer Register */
/* Read in the data to appropriate
field */

/* C utility */
/* set Data Pointer Register to
channel,reg */

Figure 8-7. Random Access to Registers

/* C example */

eg()
BEGIN
intindex = -1 ; /* counter index, 0to 4 */
sequence (ENABLE) ; /* Turn on data pointer seq */
point__to (1,HOLD_CYCLE) ; /* Set Data Pointer register */
while ((index +=1) <5) [* Counters 0 thru 4 */
Am9513.counter[index].hold = input(DATA) ; /* 16 bit transfer */
END
sequence (request) /* C utility */
intrequest ;
BEGIN
int enable = OXEO , /* commands for data pointer sequencing */
disable = OXES8 ;
if (request = = ENABLE)
output (CONTROL, & enable) ;
else
output (CONTROL, & disable)
END
; Z80 Macro example
ENTRY:
DPS ON ; Enable data pointer sequencing
POINT 1,HOLD_—_CY ; Data pointer to hold cycle
LD HL,HOLDS ; Data area
LD B,5*2 ; Byte count, 5 holds, 2 bytes each
LD C,DATA ; Am9513 data port
INIR ; Perform transfer
RET
HOLDS: DEFS 10 ; Dataarea

Z80 Macro example

ENTRY:
DPS ON ; Enable data pointer sequencing
POINT 1,HOLD—_CY ; Data pointer to hold cycle
LD HL,HOLDS ; Data area
LD B,5*2 ; Byte count, 5 holds, 2 bytes each
LD C,DATA ; Am9513 data port
INIR ; Perform transfer
RET
HOLDS: DEFS 10 ; Data area

AmB8080/Am8085 Macro example

DPS ON ; Enable data pointer sequencing
POINT 1,MODE_ ; Mode register 1
LXI H,ARRAY ; Storage area
MvI B,5*3*2 ; 5 counters, 3 x 16 bit registers
LOOP:
IN DATA ; Getabyte
MOV M,A ; Save abyte
INX H ; Move the byte pointer
DEC B
JNZ LOOP
RET
ARRAY:
MODE1 DS 2 ; counter 1 data area
LOAD1DS 2
HOLD1DS 2
MODES5 DS 2 ; counter 5 data area
LOADS5 DS 2
HOLD5 DS 2

Figure 8-8. Sequential Access to Registers

8-6

unsigned int input (port)
intport ;
BEGIN
unsigned int temp;

temp = in (port) ;
temp += in (port) *256 ;
return (temp) ;

END

output (port, data)
unsigned port, *data;
BEGIN
out (port, (*data %256));
if (port == DATA)
out (port, (*data/256));
END

[* Cexample */
/* Read 2 bytes from port */

/* local parameter to assemble word */

/* Get low byte */
/* Put high byte into temp */
/* Return the 16 bit value read */

[* 2bytes to DATA port or 1 byte */
/* to CONTROL port (8 bit bus) */

/* 16 bit transfer to DATA port */

Figure 8-9. Input/Output Routines for 8-Bit Data Bus

typedef RECORD

(unsigned day——mode
unsigned compar—1
unsigned compar—2
unsigned FOUT__source
unsigned FOUT__divisor
unsigned FOUT__gate
unsigned data__bus
unsigned data_ptr
unsigned scaler

)master__type;

SJLOLDLORERLAN

Figure 8-10. Master Mode Register — Software Structure

MASTER MODE REGISTER

The 16-bit Master Mode Register controls those internal ac-
tivities that are not controlled by the individual counter registers.
Figure 8-10 shows the record fields of the ‘Master-type’ struc-
ture. Figure 8-11 illustrates allowable field values.

The individual field declarations show, for example, that the
*.FOUT_—source’ field is four bits wide. Notice that the sum of all
the field widths is 16; the Master Mode Register is 16 bits wide.

C compilers should be checked to ensure bit field declarations
are implemented with first field at the least significant bit ad-
dress. These definitions are correct for the AMD and White-
smith’s compilers; some other compilers may need the field
order reversed.

After power-on reset or a Software Reset command the Master
Mode Register is set to the following configuration (all field val-
ues zero):

.day-mode = TOD—OFF
.compar—1 = DISABLE
.compar—2 = DISABLE
.FOUT_source =F1
.FOUT__divisor =16
.FOUT_gate =ON
.data-bus =BUS_8
.data-ptr =ON

.scaler = BINARY

Notice that changing the FOUT status by altering the source
divisor or gate fields may generate transients.

Time-of-Day

The .day—mode field can be turned off, allowing counters 1 and
2 to function the same way as counters 3, 4 and 5, or set to
TOD_—50Hz, TOD_—60Hz or TOD—100Hz allowing a 24-hour
clock function to be used. Refer to the software examples (in
Chapter 4) for further information.

Comparators

Comparator registers exist for counters 1 and 2. If a comparator
is enabled (e.g., .compar—1 = ENABLE), its output is substi-
tuted for the associated counter output. The output will remain
active while the comparison is true. The two comparators can
always be used individually in any operating mode. One special
case occurs when the Time-of-Day option is invoked and both
comparators are enabled. The operation of Comparator 2 will
then be conditioned by Comparator 1 so that a full 32-bit com-
pare must be true in order to generate a true signal on Output 2.
Output 1 will continue, as usual, to reflect the state of the 16-bit
comparison between Alarm 1 and Counter 1.

FOUT Source

The ‘.FOUT_source’ field specifies the source input for the
FOUT divider. Fifteen inputs are available for selection including

the five source pins (SRC1-SRCS5), the five Gate pins (GATE1-
GATES) and the five internal frequencies derived from the mas-
ter oscillator (F1-F5).

e.g., Am9513.master.FOUT_—_source = GATE—4;

FOUT Divider

The ‘.FOUT_divisor' field specifies the dividing ratio for the
FOUT divider. The .FOUT_source is divided by an integer
value (1-16) and passed to the FOUT output buffer.

FOUT Gate

The .FOUT._gate’ provides a software gating facility for the
FOUT output signal (ON or OFF). Notice that commands exist to
directly gate the FOUT output on and off without using the Mas-
ter register fields (e.g., FOUT ON).

Bus Width

The ‘data__bus’ field controls the width of the data bus interface
by configuring the part for an 8-bit or 16-bit external data bus.
Notice that the CP/M-compatible version of the Am9513 evalua-
tion program and the Am8080/Am8085 and Z80 macros only

Scaler Control
0 = Binary Division
1 = BCD Division

FOUT Divider FOUT Source
0000 = Divide by 16 0000 = F1
0001 = Divide by 1 0001 = SRC 1
0010 = Divide by 2 0010 = SRC 2
0011 = Divide by 3 0011 = SRC 3
0100 = Divide by 4 0100 = SRC 4
0101 = Divide by 5 0101 = SRC 5
0110 = Divide by 6 0110 = GATE 1
0111 = Divide by 7 0111 = GATE 2
1000 = Divide by 8 1000 = GATE 3
1001 = Divide by 9 1001 = GATE 4
1010 = Divide by 10 1010 = GATE 5
1011 = Divide by 11 1011 = F1
1100 = Divide by 12 1100 = F2
1101 = Divide by 13 1101 = F3
1110 = Divide by 14 1110 = F4
1111 = Divide by 15 1111 =F5

MM15 | MM14 | MM13 | MM12 | MM11|MM10| MM9 | MM8 | MM7 | MM6 | MM5 | MM4 | MM3 | MM2 | MM1 | MMO
L- Four Gate Compare 2 Enable - —

0 = FOUT On 0 = Disabled
1 = FOUT Off (Low Z to GND) 1 = Enabled

Data Bus Width Compare 1 Enabl
0 = 8-Bit Bus 0 = Disabled
1 =16-Bit Bus 1 = Enabled

Data Pointer Control Ti f-Day Mode
0 = Enable increment 00 = TOD Disabled
1 = Disable Increment 01 TOD Enabled; + 5 Input

10
11

TOD Enabled; + 6 Input
TOD Enabled; + 10 Input

o

Figure 8-11. Master Mode Register — Hardware Structures
8-8

allow an 8-bit data bus configuration while the Z8000 macros
only allow a 16-bit configuration. These constraints may be
changed by the user. Notice that the macros require the bus
width to be passed as a parameter, although it is ignored.

Data Pointer Sequencing

The ‘.data_ptr field enables or disables the automatic
sequencing functions, described under the Data Pointer Regis-
ter section. Commands exist to directly enable or disable this
function (e.g., DPS ON).

Scaler Ratio

The ‘.scaler’ field controls the counting configuration of the
frequency scaler counter. This configuration may be BCD or
BINARY.

COUNTER REGISTERS
Counter Mode Register

The Counter Mode register configures the individual counters for
various operating conditions. The Counter Mode register
software structure is shown in Figure 8-12. (For hardware
structure see Page 1-23.) On power-up or after Software Reset
the Counter Mode registers are set to the following (equivalent)
configurations:

/* C example */

.output = OFF—LO—_TC
direction = DOWN
.base = BINARY
.control = MODE_—_ABC
.source =F1
.edge = RISE
.gate = NO—_GATE
; Macro example

MODE__REG 4,0FF_LO_TC,DOWN,BINARY,MODE—ABC,
F1,RISE,NO_GATE

Refer to Chapter 1, Figure 1-16 and 1-17 for detailed descrip-
tions of the various modes available.

Load/Hold Registers

The counter Load register provides a base value for the counter.
The counter Hold register provides either a second base register
or a storage register for intermediate count values. The registers
may be accessed as follows (Counter 4 illustrated, setting Load
register to 4000 Hex):

/* C example */
Am9513.counter[3].load = 0X4000

; Macro example
LOAD__REG 4,4000H

COMMAND DESCRIPTION

The Macro files and Macro command summary provide a de-
tailed syntax and description of the action of the various com-
mand sequences and the commands available (Appendices D
through G). For further details of the various modes of operation
and command interaction refer to Page 1-25.

The following descriptions of the macro commands each provide
an example usage. For multiple register commands, counters 2,
3 and 4 are used. For single register commands, counter 3
is used.

RESET Issues a ‘RESET and ‘LOAD' 1, 2, 3, 4,
5 command sequence, the latter com-
mand to ensure no counters are in the
TC state. Refer to the register descrip-
tions for the initial settings caused by a
RESET. The Z8000 RESET Macro ad-
ditionally sets the data bus width to 16
bits and issues a dummy load data
pointer command (POINT 1, MODE_).

ARM 2,3,4 Issues an ARM command for up to 5
counters. Enables the listed counters to
count source pulses. In modes G-L the
next TC causes the counter to reload
from the Hold register; in all other
modes the next TC causes the counter
to reload from the Load register.

typedef RECORD (unsigned output
unsigned direction
unsigned base
unsigned control
unsigned source
unsigned edge
unsigned gate

Jeount__type;

/* Counter Mode Register */
:3;

)

WA RS

Figure 8-12. Counter Mode Register — Software Structure

8-9

OAD

2,3,4

LD__ARM 2,3,4

DISARM

SAVE

DRMSAV

SET_—

CLEAR

STEP

FOUT

2,3,4

2,3,4

2,3,4

ON

Issues a LOAD command for up to 5
counters. Causes the listed counters to
be loaded with the Load or Hold register
depending on the Mode register and the
state of the count cycle. If a listed
counter is in the TC state, the counter
counts once to leave TC, before load-
ing, regardless of whether the counter
is armed or the state of any gate input.
If a listed counter is in the cycle pre-
ceding TC, the counter immediately
goes to TC, regardless of whether the
counter is armed or of the state of any
gate input.

Issues a LOAD AND ARM command for
up to 5 counters. Operation is identical
to issuing separate LOAD and ARM
commands. If a listed counter is in the
TC state the counter will count once to
leave TC before loading and arming,
regardless of whether the counter is
armed or of the state of any gate input.
If a listed counter is in the cycle im-
mediately preceding TC the counter will
immediately go to TC regardless of
whether the counter is armed or of the
state of any gate input. Avoid this com-
mand, by using separate LOAD and
ARM commands where possible.

Issues a DISARM command for up to 5
counters. If a listed counter is in the TC
state, the counter counts one source
edge, to leave TC, before disarming.
Once disarmed all counting ceases.

Issues a SAVE command for up to 5
counters. Transfers contents of listed
counters into associated HOLD register
independent of, and without affecting
counter status.

Issues a DISARM AND SAVE com-
mand for up to 5 counters. Identical
to issuing a DISARM and a SAVE
command.

Issues a SET command to a single
counter. The output for the counter is
driven high provided TC toggle mode is
specified, otherwise nothing happens.

Issues a CLEAR command to a single
counter. The output for the counter is
driven low provided TC toggle mode is
specified, otherwise nothing happens.

Issues a STEP command to a single
counter. Increments or decrements the
counter irrespective of armed status or
gate conditions. The step direction de-
pends on the Mode register. The results
of stepping an armed counter while
counting are undefined.

Issues a GATE ON FOUT or GATE
OFF FOUT command. The FOUT out-
put becomes active/inactive. Notice
that a single transient pulse may be
produced.

DPS ON Issues an ENABLE/DISABLE DATA
POINTER SEQUENCE command. See
the description of the Data Pointer reg-

ister for further details.

3, MODE__ Issues a LOAD DATA POINTER REG-
ISTER command with group, element
information. See the description of the
Data Pointer register for further details.

TOD__OFF, DISABLE, DISABLE, F4, 15, ON,

BUS__8, ON, BINARY
Issues a command sequence to set the
Master register. The nine parameters
correspond to the nine data model
fields and as such are reversed in
order, reading low order bits to high
order bits from left to right. Notice that
the nine parameters are NOT checked
by the macros for space reasons.

MODE_REG 3, TC_TOGGLE, UP, BCD, MODE__ABC, F4,
FALL, NO GATE

Issues a command sequence to set the
Mode register for a counter. The first
parameter identifies the counter and the
next seven parameters correspond to
the seven data model fields. The seven
data model fields read low order bit to
higher order bit from left to right. The
seven parameters are NOT checked by
the macros for space reasons.

POINT

MASTER

LOAD_— 3,4000H Issues the command sequence to set

REG the Load register for a single counter to
a given value, in this case a constant,
4000H.

HOLD_— 3,4000H, | Issues the command sequence to set

REG the Hold register of a single counter to a

given value, in this case the contents of
the address 4000H. The Z8000 macro
does not require the indirection flag (1)
since the AMD Assembler Macz is able
to identify the indirection mode from
context.

EXAMPLE: Am9513 EVALUATION PROGRAM

The Am9513 evaluation program is menu-driven allowing full
functional testing and evaluation of an Am9513 located within a
host system 1/O address space. The evaluation program is writ-
ten entirely in C and is provided under the CP/M (ver. 2.2) com-
patible AMDOS operating system to allow interactive usage
without the necessity of a resident C compiler.

The Am9513 driver uses the data model and commands de-
scribed earlier, thus providing a useful example of Am9513 C
programming. Additionally, at certain points throughout the
driver program, further explanation is provided on request,
mostly in the area of the various operating modes available. All
functions associated with the Am9513 may be exercised, in-
cluding defining the port addresses associated with the device
under test. However, since the target code is for the Am8080/
Am8085, the data bus width is restricted to 8 bits.

Figure 8-13 provides an example of the coding used within the
evaluation program and Figure 8-14 shows an actual user run-
time test session (user input is highlighted).

Am9513_type

Am9513, /* declare the storage */
*Am9513__ptr ;

read_element (mode)
I* This procedure will read the chip registers using either

SEQUENCE or random-access depending on the mode parameter request.
*

intmode ;
BEGIN
intloop—count ;
unsigned int A[3] ; /* temp array for register values */
int group, element ; /* indices */
if (mode = = SEQUENCE)
THEN
BEGIN

sequence (ENABLE) ;

point_to (1,MODE) ;

Am9513__ptr = &Am9513 [0] ;

loop_—count=0 ;

while ((loop—count +=1) <6)

BEGIN)
Am9513_ptr—>counter[group] .mode = input (DATA) ;
Am9513__ptr—>counter| group.load = input (DATA) ;
Am9513__ptr— >counter[group].hold = input (DATA) ;
Am9513_ptr++ ;

END

END
else
BEGIN

Am9513_ptr = &Am9513[0] ;

group=10 ;

sequence (DISABLE) ;

while ((group +=1) <6)

BEGIN
element= -1 ;
while ((element+=1)<4)

BEGIN
point_to (group, element) ;
A [element] = input (DATA) ;
END
Am9513__ptr—>counter[group].mode = A [0] ;
Am9513_ptr—>counter[group].load = A [1] ;
Am9513__ptr—>counter[group].hold = A [2] ;
Am9513__ptr++ ;
END
END
END

Figure 8-13. Am9513 Evaluation Program Segment
8-11

Main Menu

1. Setdata bus width
2. Software reset

3. Set output channel
4. Set Master register
5. Set port addresses
6. Arm counters

7. Load

<enter option>
D

0. All regs using data ptr sequencing
1. All regs using random access
2. Moreinfo

<enter option>

3

mode

00001011
00001011
00011100
00001011
00001111

00000000
00000000
11101001
00000000
00100010

OB WN =
O>»<>»>

0. All regs using data ptr sequencing
1. All regs using random access
2. More info

<enter option>
6

Main Menu

1. Set data bus width
2. Software reset

3. Set output channel
4. Set Master register
5. Setport addresses
6. Arm counters
7. Load

<enter option>
6

Arm counters: enter 1-5on one line
35
Code used 34H

MTMoOOW»oO®

MMOUOWPO®

. Load and arm

Disarm
Save

. Disarm and save

Step

. Read registers, etc
. Set counter operating modes, etc
. Clear output channel

3. Any regs, random access

4.. Any regs, random access, n times
5. Printentire 9513 reg. set

6. Return to main menu

mode

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

3. Any regs, random access

4. Any regs, random access, n times
5. Print entire 9513 reg. set

6. Return to main menu

. Load and arm
. Disarm

Save

. Disarm and save

Step

. Read registers, etc
. Set counter operating modes, etc
. Clear output channel

Figure 8-14. Am9513 Evaluation Program Session

8-12

Appendices

HELPFUL HINTS
1. Set (or clear) command should be issued after the load counter command.

2. The counter output should not be connected to edge sensitive interrupts as the load counter command
may cause a glitch on the counter output. Interrupts should be disabled during the load command if
this absolutely has to be done.

3. For counting rates greater than 7MHz, refer

“High Frequency Operations with the 9513 Controller” by Terrence J. Andrews. Electronics/February
28, 1980.

“Pulse Swallowing” by John Nichols & Charles Shinn EDN/October 1, 1970.
4. When using fast processors watch out for recovery time!

APPENDIX A — DEALING WITH METASTABLE PROBLEMS

The Am9513A has improved synchronizing circuitry which limits
the error to =1 count if the specified setup and hold times are
not met. This section may be skipped if a =1 count is accept-
able. Please read this section if using the Am9513.

Any circuit employing memory storage devices (i.e., flip-flops) is
susceptible to metastable problems. These problems will surface
when the storage device is clocked in close temporal proximity to
changes on the data inputs. For example, with a D-type flip-flop,
changing the D input near an active-going clock edge may cause
the flip-flop to go into a metastable state. When a device goes into
ametastable state, the Q and Q outputs may both be at the same
level, may be at intermediate levels or may oscillate between
levels. The circuit can remain in the metastable state for a time
duration many times longer than the normal propagation delay of
the device. The time that the metastable state will persistis based
on the exponentially decreasing probability curve (see Figure
A-1), with the rate of decrease dependent on the gain-bandwidth
product of the device.

Circuit devices such as flip-flops have setup and hold time re-
quirements on the control inputs specified relative to applied
clock edges. These setup and hold parameters specify the win-
dow during which changes on the control lines may cause a
metastable. As long as these parameters are met, metastables
will not arise.

Computer system designers eliminate most metastable problems
by designing synchronous systems which guarantee the required
setup and hold time between clock edges and storage device
control inputs. Inputs which are inherently asynchronous, such as
interrupts, are sampled and held for a sufficiently long time to
allow most metastables to die out. Since the probability of a
metastable persisting decreases exponentially, it will never reach
zero. Designers of systems with asynchronous inputs use the
maximum acceptable failure rate as a guide to determining the
time allowed for metastables to decay after sampling the asyn-
chronous input signal.

The data sheet parameters pertaining to synchronization for the
Am9513 are TGVEH, TEHGV, TEHWH, TWHEH, TGVWH and
TWHGV and for the Am8253 are igg and igH. As iong as these
parameters are met, there will be no metastable problems. To
determine if a circuit meets these parameters, use the following
guidelines.

Parameters TGVEH and TEHGV for the Am9513 and tgg and
tgH for the 8253 specify that when a source edge is applied to
an armed counter, the gate must be stable TGVEH (Am9513)

or tgs (8253) before the source edge and the gate must be
held stable for TEHGV (Am9513) or tgH (8253) after the source
edge for level gating; and for edge gating meaningful transi-
tions on the gate input must not occur closer than TGVEH
(Am9513) or tgs (8253) before the source edge or sooner than
TEHGV (Am9513) or tgH (8253) after the source edge. A
meaningful transition in edge gating is defined as a gate edge
applied to an armed counter that starts the counter counting in
Modes C, F, I, L, O or R, (Am9513) or any active-going gate
edge applied to an armed counter in Modes O or R. In the
8253, parameters tgs and tgH must be met relative to the fall-
ing source edge; in the Am9513, parameters TGVEH and
TEHGV should be met relative to the rising source edge if
Counter Mode register bit CM12 = 0 and to the falling source
edge if CM12 = 1. These two parameters need only be met
while the counter is armed.

Parameters TEHWH and TWHEH (Am9513) specify that when a
write command is issued to a given counter, that counter must
not have an active-going count source edge any closer than
TEHWH before the rising WR edge and the next active-going
count source edge must not occur until TWHEH after the rising
WR edge. These parameters must be met for all commands
issued to an armed counter and for ARM, LOAD-and-ARM and
STEP commands issued to a disarmed counter. As an aside, if
these parameters can not be met, it is strongly suggested that
the programmer use separate LOAD and ARM commands
rather than the combined LOAD-and-ARM command in order to
limit the number of events that need to be simultaneously per-
formed. The 8253 has a similar restriction, namely that applying
a rising WR edge to a counter close to our active-going source
edge may cause counter problems. However, the 8253’s data
sheet, unlike the Am9513’s, does not call out what constitutes a
safe application of a write to counter.

Parameters TGVWH and TWHGV (Am9513) specify that when
a write command is issued to a given counter, the gate input to
that counter must be stable TGVWH before the rising WR edge
and the gate must remain stable TWHGV after the rising WR
edge for level gating; and for edge gating meaningful transitions
(defined above) on the gate must not occur TGVWH before the
rising WR edge or sooner than TWHEH after the rising WR
edge. These parameters must be met for all commands issued
to an armed counter and for ARM, LOAD-and-ARM and STEP
commands issued to a disarmed counter. As above, use the
separate LOAD and ARM commands if these parameters can
not be met. The 8253 counters are susceptible to erroneous
operation if a rising WR edge is applied to a counter close to

PROBABILITY OF
METASTABLE STILL
BEING PRESENT

HIGH GAIN-BANDWIDTH

/__ LOW GAIN-BANDWIDTH

TIME SINCE START OF METASTABLE

MOS-636

Figure A-1. Metastable Decay Probabilities

APPENDIX A (Cont.)

a retriggering gate edge. Unlike the Am9513’s data sheet,
the 8253’s does not specify when it is safe to apply a write
command.

In the Am9513, some commands such as ARM, DISARM and
SAVE can be applied to more than one counter at a time. For
such commands, each counter being acted on must meet
parameters TEHWH, TWHEH, TGVWH and TWHGV.

Failure to meet one or more of the Am9513 parameters
TEHWH, TNHEH, TGVWH or TWHGV or failure to meet the
unspecified 8253 restrictions or when write commands can be
issued may result in incorrect execution of the entered com-
mand. For example, with a Am9513 SAVE command or an
8253 counter latching operation, an incorrect value might be
stored. It is also possible, although likely less probable, that a
command entered in violation of these parameters may have a
more drastic effect, perhaps altering the counter’s contents or
perhaps locking the counter up. It is because of the unpredict-
able nature of metastables that it is not possible to pinpoint the
command failure mode that may be experienced. Many users
provide reasonableness checking routines in their software to
help detect if an error arises, perhaps performing two (Am9513)
SAVE or two (8253) counter latching operations, for example,
and comparing the results. The Am9513A may have a count
errorof =1.

With the Am9513, it is sometimes necessary to calculate the
relationship between one of the internal F signals (F1 through F5)
and some externally applied signal, perhaps a gate or WR edge. If
FOUT is driven from an internal F signal, say F5, any internal F
signal, say F3, can be referred to the FOUT transition using data
sheet parameters TFN and TEHFV. In the above example, the
maximum delay between a transition on F3 and a transition on
FOUT is given by TFN (F3 to F4 delay) + TFN (F4 to F5 delay) +
TEHFV (FOUT source to FOUT output delay) = 2 TFN + TEHFV.
It turns out that the internal F1 signal can be assumed to be
equivalentto (i.e., has 0 ns skew relative to) the X2 input. This can
be used to reference X2 to one of the internal F signals, for
example, to F3. The X2 to F3 maximum delay is simply: (0 ns (X2
to F1 delay) + TFN (F1 to F2 delay) + TFN (F2 to F3 delay)) = 2
TFN. Using the above techniques, any F signal can be referenced
to FOUT (if FOUT has one of the F signals as a source) or to X2.
chronize signals, perhaps an asynchronous gate or WR edge,
relative to the internal F signal. Note, however, to avoid biasing
Since the relationship between X2 or FOUT to the internal F
signal is known, the X2 or FOUT signal may be used to syn-
problems with the Am9513’s internal oscillator, if X2 connects to a

crystalor to an LC or RC network, the X2 node should not be used
to drive any gates other than the Am9513’s X2 input. The X2
signal should only be used to drive other gates if itis being driven,
as shown in Figure 2-3 (c), by an external signal not generated by
the Am9513’s internal oscillator.

In many systems it may be difficult or impossible to meet some
or all of these parameters. In recognition of this, the Am9513
has on-board circuitry designed to synchronize signals violating
the above parameters. Because of the low gain-bandwidth
product available in MOS technology vis-a-vis bipolar technol-
ogy, there is a small but significant probability of failure in the
Am9513’s synchronizing circuitry. Again at the risk of being
repetitious, problems because of synchronization failure can
only occur if the user does not meet data sheet parameters
TGVEH, TEHGV, TEHWH, TWHEH, TGVWH and TWHGV
(Am9513) or tgg and tgH (8253).

Calculations can be made to compute the expected failure rate for
truly asynchronous signal entry. To calculate the expected
metastable error rate, it must be assumed that the two input
signals being analyzed are truly asynchronous. Signals which are
generated from a common source but which may be skewed
relative to each other because of indeterminate propagation de-
lays in their separate paths are not truly asynchronous. The word
synchronous, as used in this document, refers to all of these
non-asynchronous signals, i.e., to any signals with a predictable
timing relationship.

The reason the signal must be truly asynchronous is related to the
setup/hold window specified by the parameters in the data sheet.
Any given chip will have a setup/hold window much smaller than
that given in the data sheet. The typical setup/hold window re-
quirements for a particular counter may actually be many orders
of magnitude smaller than the one given in the data sheet. See
Figure A-2. This very narrow window for different parts will appear
at different points within the data sheet’s required setup/hold
window. Also, for a given part, this very narrow window will move
with changes in operating conditions (voltage, temperature, etc.).
The data sheet parameters specify the outer limits of these varia-
tions for worst-case conditions.

If signal transitions occur within the narrow setup/hold window of
a given part, there is a high probability of a metastable occurring.
If the applied signals violating the setup/hold time are truly asyn-
chronous, the probability of their violating the setup/hold window
israndom. If, on the other hand, the two signals are derived froma
common signal or crystal, they in fact will have some predictable

NARROW METASTABLE WINDOW
FOR A PARTICULAR PART AT A
PARTICULAR TEMP.,VCC, ETC.

GATE /

7

TGVEH

SOURCE

TEHGV |

NARROW WINDOW WILL LIE SOMEWHERE
WITHIN THIS AREA FOR OPERATION OF ANY
DEVICE OVER FULL RANGE OF TEMPERATURE,
VCC, ETC.

MOS-637

Figure A-2. Am9513 Setup-Hold Requirements

APPENDIX A (Cont.)
relationship and, at a given set of operating conditions, may fall in
the setup/hold window time after time, causing high failure rates.

For this reason, if the Am9513’s or 8253’s synchronization
parameters can not be met, the violating signal pairs must be
truly asynchronous to each other in order to set the probability
odds on the side of the user. More specifically, if parameters
TGVEH or TEHGV (Am9513) or tgs or tgH (8253) can not be
met, the gate and source should be asynchronous. If TEHWH
or TWHEH (Am9513) can not be met, the WR and source sig-
nals should be asynchronous (i.e., do not clock the Am9513 off
the processor’s clock, or vice versa). If TGVWH or TWHGV can
not be met, the WR and gate signals should be asynchronous.
Since the 8253’s data sheet does not specify when it is safe to
issue write commands the user cannot be certain metastables
will not occur.

Assume there is a circuit which violates at least one of the
Am9513’s or 8253’s synchronization parameters and an ap-
proximation is desired of the failure rate that may occur. To a
first order approximation, one may use the formula

P(meta) = rq ro ty

where

P(meta) = probability of a metastable over a given period of time
ry, rp = transition rates of two input signals

tw = setup/hold window size of a particular part

Note that the equations presented in this appendix are useful
for analyzing the probability of metastables, not only for the
Am9513 and 8253 but also for any other sequential logic circuit
having asynchronous inputs.

Variables r1 and rp are the rate of relevant transitions on the
two input signals. For Am9513 sources, only the active-going
source edge must be synchronized to the gate or command
input. The inactive-going source edge has no effect on the
counter. For the 8253, the falling source edge must be syn-
chronized to the gate. For Am9513 command entry, only the
rising (trailing) WR edge must be synchronized; the falling
(leading) WR edge can be asynchronous. In Am9513 level
gating modes and 8253 modes 0, 2, 3 and 4, both active and
inactive gate edges must be synchronized to the source,
whereas in Am9513 edge gating applications or 8253 modes 1
and 5, only the meaningful gate edges have significance. (See
the definition of meaningful gate edges earlier in this appendix.)
Thus for all inputs except Am9513 level gate signals or 8253
gate signals in modes 0, 2, 3 and 4, parameters ry or rp are
equal to the frequencies of the inputs. For level gating, since
both edges have significance, the transition rate rq or ro is
twice the gate signal frequency.

Variable ty, is the narrow setup/hold window for a given part under
a certain set of operating conditions (see Figure A-2). The actual
value of this variable will be highly dependent on the application,
and for this reason it is best determined empirically for the par-
ticular application being studied.

One approach useful in determining P(meta) is to run the applica-
tion at a much higher rate than is normaily intended. This should
generate an easily measurable error rate. The value of ty can
then be calculated and used to calculate P(meta) for the normal
rate of operation.

For example, suppose a user plans to asynchronously level-gate
at a rate of 10Hz while using a 1000Hz source. The user wishes
to calculate P(meta) for this application. Parameter t,, might be
calculated while running a 2MHz signal into the source while
level-gating at 200kHz. He might observe the counter output to

A-3

verify correct operation. By observing the error rate over a period
of time, the above formula could be used to calculate ty, as
follows:

_ P(meta)’

ri' ro’

Note in our application 1y = 2 x 108 and ro’ = 400 x 108.
Parameter ro’ is twice the gate frequency since both gate edges
must be synchronized. The empirically determined t,, can now be
used to find P(meta) for the intended application using the
formula

tw

P(meta) = rq ro ty

withry = 1000Hz and rp = 20Hz, corresponding to the source and
gate repetition rates for the desired application.

In many cases, no errors will be observable even at accelerated
operating rates. The ratio of the accelerated rate to the final
applications rate allows extrapolation of the period of time likely
between errors. For example, if our user observed the acceler-
ated application for ten minutes and no error was seen, he could
extrapolate the time between errors for the final application as

follows: 1e
rror

_ 1000 Hz x 20 Hz x 10 minutes

r ro’ 2 x 108 Hz x 400 x 103 Hz
2.5 x 10~9 errors/sec = 1 error/4 x 108 minutes

Thus, the final application’s average error rate will likely be better
than once every 760 years.

In some applications, more than one Am9513 setup/hold
parameter may be violated. (Since the 8253 data sheet only
specifies the source-gate setup requirements, the user can not
be sure whether applied write commands are in violation of the
setup and hold requirements of the 8253's gate and source.)
For each setup/hold window possibly violated (TGVEH and
TEHGV; TEHWH and TWHEH; and TGVWH and TWHGV), the
related pairs of signals (gate-source; source — WR; and gate —
WR) should be run at accelerated rates to compute tw'.

r{ ro P(meta)’

It

P(meta)

The formula can then be used to estimate P(meta) for each of the
setup/hold requirements. The resuitant error probability is then
the sum of the P(meta) values for each setup/hold window.

For example, our above discussion calculated P(meta) for the
TGVEH — TEHGV source-gate setup/hold window. We might
also calculate P(meta) for the TEHWH — TWHEH source — WR.
window by using accelerated source and WR signals, keeping the
gate repetition rate at the final application rate of 10Hz to
minimize its effect. If our new source — WR P(meta) was 1 error
every 500 years, the combined average error rate would be
(1/500 + 1/760) or 1 error every 300 years. If the gate — WR
setup/hold parameters were also violated, the P(meta) for this
window should also be calculated as a component in the final
error rate. As mentioned earlier, these calculations can also be
used to analyze metastable error rates for any other sequential
logic circuit having asynchronous inputs.

Three cautionary notes are appropriate at this point. First, the
formula provides a first order approximation only and should be
used only for rough estimates. Second, since metastable errors
will occur at random times for asynchronous signals, multiple
measurements and use of statistical techniques should be used
to minimize the effect of random fluctuations in the measured
data. Third, the desired application should be thoroughly tested at
the normal operating frequencies. This approximation technique
of estimating error rates should be used to further substantiate
the results of this through testing rather than be used in lieu of
thoroughly testing the application.

APPENDIX B — KEY TO TIMING DIAGRAMS

Waveform

AN\
/g
XXX
_ X

Waveform Representations

Inputs

Must be steady

May change from
High to Low

May change from
Low to High

Don’t care
Any change
permitted

May make one change
from High to Low or
Low to High

Outputs

Will be steady

Will be changing
from High to Low

Will be changing
from Low to High

Changing
State unknown

Will make one change
from High to Low or
Low to High

MOsS-638

B-1

APPENDIX B — Am9513 SWITCHING WAVEFORMS

Bus Transfer Switching Waveforms

TEHRL TRHEH TEHWH |o. TWHEH _,
(NOTE 5) (NOTE 7) (NOTE 6) (NOTE 8)
ENABLED —
COUNT
SOURCE
(NOTE 10)
TGVWH |l TWHGV
(NOTE 6) (NOTE 8)

GATE INPUT
(NOTE 13)

[=—— TSLRL TRHSH - TWHSH

cs ﬂ TSLWH \
(NOTE 15) p

TAVRL —=| |=— TRHAX TAVWH TWHAX

_ B
C/D —X
| 7 7
[~ TRLRH e TRHRL——I TWHRL

TRHWL i TWLWH —=| fe———— TWHWL ——-‘

B / AV
TRLQY = TRHOZ =

TRLQX l» TRHQX TDVWH TWHDX

DATA N\ - Vi AN
IN/OUT /4 N '

TWHYV

(NOTE 9)

ouTt X

MOS-183
Counter Switching Waveforms
TEHEH
TELEH ———|
ENABLED —
COUNT
SOURCE
(NOTE 10) TEHEL)
TGVEH TGVGV
(NOTE 12) TEHGY (NOTE 11)
L
GATE
(NOTE 13) X K X
TEHFV
X
FOUT
7
TEHYV:
ouTt X
TCHCH TCLCH

X2
(NOTE 16)
l=— TCHCL
™ —_\—_/F_—\—/—____/__—___

TFN (NOTE 14)

FN+1

MOs-184

B-2

APPENDIX B — Am9513 SWITCHING WAVEFORMS

NOTES:

-

[S 0N

. Typical values are for Ty = 25°C, nominal supply voltage

and nominal processing parameters.

. Test conditions assume transition times of 10ns or less,

timing reference levels of 0.8V and 2.0V and output loading
of one TTL gate plus 100pF, unless otherwise noted.

. Abbreviations used for the switching parameter symbols are

given as the letter T followed by four or five characters. The
first and third characters represent the signal names on
which the measurements start and end. Signal abbrevia-
tions used are:

A (Address) = C/D

C (Clock) = X2

D (Data In) = DB0-DB15

E (Enabled counter source input) = SRC1-SRCS5,
GATE1-GATES, F1-F5, TCN—1

F = FOUT

G (Counter gate input) = GATE1-GATES, TCN—-1

Q (Data Out) = DB0-DB15

R (Read) = RD
S (Chip Select) = CS
W (Write) = WR

Y (Output) = OUT1-OUTS

The second and fourth letters designate the reference
states of the signals named in the first and third letters
respectively, using the following abbreviations.

H = High
L = Low
V = Valid
X = unknown or don’t care

Z = high impedance

. Switching parameters are listed in alphabetical order.
. Any input transition that occurs before this minimum setup

requirement will be reflected in the contents read from the
status register.

. Any input transition that occurs before this minimum setup

requirement will act on the counter before the execution of
the operation initiated by the write. Failure to meet this setup
time when issuing commands to the counter may result in
incorrect counter operations for the Am9513. For the Am9513A,
the count value may be off by =1. The counter will continue to

‘operate correctly.
. Any input transition that occurs after this minimum hold time

is guaranteed to not influence the contents read from the
status register on the current read operation.

8.

11.

12.

13.

14,

Any input transition that occurs after this minimum hold time is
guaranteed to be seen by the counter as occurring after the
action initiated by the write operation. Failure to meet this hold
time when issuing commands to the counter may result in incor-
rect counter operation for the Am9513. For the Am9513A, the
count value may be off by +1. The counter will continue to
operate correctly.

. This parameter applies to cases where the write operation

causes a change in the output bit.

. The enabled count source is one of F1-F5, TCN-1,

SRC1-SRCS5 or GATE1-GATES, as selected in the applica-
ble Counter Mode register. The timing diagram assumes
the counter counts on rising source edges. The timing spec-
ifications are the same for falling-edge counting.

This parameter applies to edge gating (CM15-CM13 = 110
or 111) and gating when both CM7 = 1 and CM15-CM13 #
000. This parameter represents the minimum GATE pulse
width needed to ensure that the pulse initiates counting or
counter reloading.

This parameter applies to both edge and level gating (CM15-
CM13 = 001 through 111) and gating when both CM7 = 1 and
CM15-CM13 = 000. This parameter represents the minimum
setup or hold times to ensure that the Gate input is seen at the
intended level on the active source edge. Failure to meet the
required setup and hold times may result in incorrect counter
operation for the Am9513. For the Am9513A, the count value
may be off by +1. The counter will continue to operate
correctly.

This parameter assumes that the GATENA input is unused
(16-bit bus mode) or is tied high. In cases where the
GATENA input is used, this timing specification must be met
by both the GATE and GATENA inputs.

Signals F1-F5 cannot be directly monitored by the user. The
phase difference between these signals will manifest itself
by causing counters using two different F signals to count at
different times on nominally simultaneous transitions in the
F signals.

. This timing specification assumes that CS is active

whenever RD or WR are active. CS may be held active
indefinitely.

. This parameter assumes X2 is driven from an external gate

with-a square wave.

. This parameter assumes that the write operation is to the

command register.

Appendix C — Am9513 C Data Model Summary

The following Am9513 data model summary collects together all C structures
appearing in the text of this note for reference purposes.

/%
*/

Record definitions - register fields for Am9513 data model

typedef RECORD

typedef RECORD

typedef RECORD

/* Master

{unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned _
unsigned data_ptr
unsigned scaler :

} master_type ;

day_mode H
compar_1
compar_2
FOUT_source
FOUT_divisor
FOUT_gate
data_bus

mode Fegister */

[l el el N e ks
e e wo wewe we wo we wo

/* Counter Mode Register */

{unsigned
unsigned
unsigned
unsigned
unsigned
unsigned edge
unsigned gate
} count_type ;

output
direction
base
control
source

e oa o1 oo

/* Status
{unsigned byte_ptr :
unsigned outputl :
unsigned output2 :
unsigned outputd :
unsigned output4 :
unsigned outputd H
unsigned not_used :

} status_type ;

/% Load
typedef RECORD {unsigned group :
unsigned element H
unsigned cmnd_code :
} data_type ;
/% - chip level structures */
/* Single
typedef RECORD {count_type mode ;
unsigned int load 3
unsigned int hold 3
} channel_type ;
/* Am9513
typedef RECORD {master_type master ;

channel_type

status_type status
unsigned int alarm_1 3
unsigned int alarm_2 ;

} AM9513_type ;

[X ey TN
e e e er o we we

£
3¢
~N

kegister

N b b s
we woree o o we wo

data ptr register ccmmand */

3 3
2 3
3 3
counter set */
chip set %,

counter [5] ;

Appendix D — Am9513 Macro Command Summary

This appendix defines the macro command available with detailed syntax of
use. The macros are available for the following assemblers:

1. Am8080/Am8085 MACRO8 assembler (AMD)
2. Z80 RIO assembler (Zilog)
3. 78000 MACZ assembler (AMD)

The avelleble macros are summarised here with deteils of usage. Notice
that in the following text angle brackets ('<>"? are used to describe param-
eters to be entered ard as such are not actually to be entered. Sguare brackets
("[1") describe optional 1tems.

The "CR" symbol (") signifies that only one ¢f the parameters given
should be entered.

The comma is a legal parameter separator for all three macro files.

RESET

FCUT CNIOF

TPS ONIOF

POINT <group>,<element>

ARM <{combtination)

I10AD <{zombination)

I.D_ARM {combination)>

SAVE <{combination>

DRMSAV {combination)>

SET_ {counter>

CLEAR {counter>

STEP {counter>

LOAD_REG {counter),<constant>[,{indirection>]

HCLD_REG <{counter>,<corstant>[,<indirection>]

MODE_EKEG <counter>,<output>,{direction>,<tase>,<controld,<{sourced>
,{edge>,<{gated>

MASTER <{day_mode>,{compar_1>,{compar_2>,<KFOUT_source>, {FOUT_civisor:

, <FOUT_ pate) <data bus) <data_ptr>,<scaler>

Appendix D — Am9513 Macro Command Summary (Cont.)

<{combination>

{counter)
<indirection>

{group>

<element>

<output>
{direction)>
<base)
<control>
{source>
<edge>
<gate>

<day_moded>

{compar_2>
{compar_1>
<FOUT_source>

<FOUT_divisor>
<FCUT_gate>
<data_bdus>
{data_ptr>
<{scaler>
<hex_digit>
{constant)>

digit>

<allowed_modes>

..

.o
.o

.
.o

]
..

"

{counter>i{<counter>,<{combinationd
112131415

I

{counter>{CTRL_GR

MOLE_|{LOAD_}HOLD_|EOLD_CY
{ATAEM1_}ALAEM2_TMASTEER_|

STATUS _
OF_LO_TC!ACT_HI_TC!TC_TCGGLE!OF OC_TC ACT_LO_TC
UP{DCWN

{scaler>

<allowed_modes>

<FOUT_source>{TC_NM1

RISE|FALL

NO_GATE|HL TC_NM1|EL _NP1_GATE}HL_NM1_GATE{HL_GATE_N
‘LI_GATE_NTHE GATE_NTLE GATE N

TOD_COFF|TCD_5@HZ ! TOD_6@HZ | TOD_100EZ

{compar_1>

ENABLE!DISABLE
SRC_1ISRC_2iSRC_3|SRC_4!SRC 5
.GATE IIGATI 2|GATE _3TGATE_4iGATE_5
IF11F2|F2!F4TF5

<hex_digit)

ONICE

BUS_BIBUS_16

ON{OF

BINARY|BCD
<digit>|@AH|¢BH|@CH|@DH |QEH | @FH
<digitd>i<digit><constant>
@i1121314i5i6{71819

MODE_ABC|{MCDE_DEF {MCDE_GEI {MCDE_JKL !MCDE_mNO
IMODE pQR.MODE Stu.MODE Vwx

D-2

Appendix E — Am9513 Macros for Am8080/Am8085

The following macro code definitions implement the macro commands as
listed in the Macro Command Summary (Appendix C). Notice that all macros
use only the A and F registers, all other working registers are unaffected.
These macros are targeted for the AMD MACRO8 assembler.

H Am9513 Macro definitions for AmSC&Z Macrof Assembler

S_MASK MACERO P1,P2,P3,F4,P5

73 Recursive macro to get correct s-field

IFNB <p2>

S_MASX Pz,P3,P4,P5

ENDIF

IFT (2 LT P1) AND (P1 LT 6)
TLAB SET DLAB OF (1 SEI (P1-1))

ELSE

22?2 P1 ; Illegal Courter

ENDIF

ENDM

S_TYPE MACRO X,P1,F2,P3,P4,P5

i3 Optimised sequence for multiple register s-field commands

IFT X EQ 22H CR X EQ 40H CR X EQ 62E CRE X EC 2C2H CE ¥ EQ Z%EELD
DLAB SET X

S_MASK P1,P2,P3,F4,P5 q;g;‘;‘tQ 8oL

MVI A,DLAB

ouT A _CTRL

ELSE

277 X y Illegal s-mask command code

ENDIF

ENIDM

N_TYPE MACRO P1,P2

33 Optimised sequence for sirgle register n-field commards

IFT (2 LT P1) AND (P1 LT €)
MVI A,P1 OR P2
cuT A_CTRL
ELSE
7?2 P11 ; Illegal Counter
ENDIF
ENDM
ARM MACRO P1,P2,P3,P4,P5 ++ Arm counters. any from 1,5
S_TYPE 2¢H,P1,P2,P3,P4,F5
ENDM
LOAD MACRO P1,P2,P3,P4,P5 i3 Loed counters, any from 1,5
S_TYPE 4@H,P1,P2,P3,P4,E5
ENDM
LD_ARM MACRO P1,P2,P3,P4,P5 35 Load “n Arm counters, any from 1,5

S_TYPE 60E,P1,P2,P3,F4,F5
ENDM

E-1

Appendix E — Am9513 Macros for Am8080/Am8085 (Cont.)

CISAEM MACEO P1,P2,P3,P4,P5 ;3 Disarm counters, any from 1,5
S_TYPE oC@H,P1,P2,P3,P4,P5
ENIM

SAVE MACRO P1,P2,P3,P4,P5 H
S_TYPE @AQK,P1,P2,P3,P4,P5
ENDM

Seve counters, any frem 1,5

-

TEMSAV MACRO P1,P2,P3,P4,P5
S_TYPE &@KE,P1,P2,P3,P4,P5

~e
-

Disarm ‘n Save counters. any from 1,5

ENDM
SET_ MACRO P1 33 Set single ccurter output
N_TYPE P1,¢E8H
ENDM
CLEAR MACRC P1 33 Clear single counter output
N_TYPE P1,0E@H
ENDM
STEP MACRC P1 y3 Step single counter output
N_TYPE P1,0F0QH
ENDM
FOUT MACRC P1 ys Gate FOUT on or off
IFT ‘&P1° EQ “OF°
MVI A,CEEH
ouT A_CTRL
ELSE
IFT ‘&P1” EQ “ON7
MVI A,QE6E
ouT A_CTRL
ELSE
?2?2?2 P1 § Illegal request
ENDIF
ENDIF
ENDM
RESET MACRC 33 Reset, load all counters
MVI A,0FFH
ouT A_CTRL
LOAD 1,2,3,4,5
ENDM
POINT MACRO P1,P2 3y Set data pointer register group, element
IFT ((¢ LT P1 ANT P1 LT 6) OP P1 EG¢ 7! AND 7z LE P2 AND P2 LT 4
MVI A,P1 CR (P2 SHL 3)
curT A_CTRL
ELSE
22?7 P1,P2 3 Illegal request
ENDIF
ENDM

E-2

Appendix E — Am9513 Macros for Am8080/Am8085 (Cont.)

LPS

MASTER

CLAB
DLAB
DLAB
DLAE
DLAB
TLAZ
DLAE
DLAB
DLAE

MACRO
IFT
MVI
ouT
ELSE
IFT
MVI
OoUT
ELSE
77?7 P1
ENDIF
ENDIF
ENDM

MACRO

SET
SET
SET
SET
SET
SET
SET
SET
SET
POINT
MVI
ouT
MVI
ouT
ENDM

MODE_REG MACRO

TLAB
DLAR
DLAB
DLAB
TLAB
DLAB
TLAB

IFT
??? P1
ELSE
SET
SET
SET
SET
SET
SET
SET
IFT
PCINT
MVI
ouUT
MVI
ouT
ELSE
77?2 PO
ENDIF
ENDIF
ENDM

Pl

33 Set deta pointer sequercing on/of

‘&P1° EQ ‘ON”
A,CEOH
A _CTRL

“&P1° EG CF’
A,QE8H

A_CTR

P1,P2,P3,P4,P5,P6,P7,P8,

P1
DLAB
DLAB
DLAR
DLAB
DLAR
DLAF
DLAB
DLAB
CTRL_

L

OR
OR
OR
OR
CR
OR
CR
CR

Gk,

y Illegel request

(P2 SHL 2)

(PZ SEL 3)

(P4 SEL 4)

(P5 SHL 8)

(P€ SHL 12)
(@ SHL 13)

(P8 SHL 14)
(P9 SHL 15)
MASTER_

A, 10W DLAB
A_DATA
A, EIGH DLAB
A_DATA

p2,P1,P2,P3,P4,P5,P6,P7

P1 EQ 3 OR 5 LT P1

y Illegal OQutput Control

P1

DLEB
DLAB
DLAB
DLAE
DLAB
DLAB
@ LT

OR
CR
CR
OR
CR
CR
P

P@,MODE_
A, LOW DLAB

A_TAT

A

(P2 SHL 3)
(P3 SHL 4)
(P4 SHL 5)
(P5 SEL 8)
(P6 SHL 12
(P7 SHL 13
AND P2 LT

A, EIGH DLAB
A_DATA

y Illegal counter #

PY

y3 Set Master register

33y .dey_mode

yy .compar 1

33 .compar_2

y3 .FOUT_source

yy CFCUT_divisor

73 .FECUT_gate

i3 .data_bus - 8 bit only
y» .data_ptr

y3 .scaler

73 Point to Master Register

3y Send Low byte first

33 Then High byte
73 Set counter FZ Moce register

35 .output

yy .direction
yy .base

y» .control
33 .scurce

3y .edge

3y .gate

y3 Point to counter P1 Mode
y3 Send Low byte

33 Then High byte

E-3

Appendix E — Am9513 Macros for Am8080/Am8085 (Cont.)

LOAT_EKEG MACKO
IFNB
POINT
LDA
ouT
LDA
ouT
ELSE
POINT
MVI
ouT
MVI
ouT
ENDIF
ENDM

HOLD_REG MACRC
IFNEB
POINT
LDA
OUT
LDA
CUT
ELSE
POINT
MVI
OUT
MVI
ouT
ENDIF
ENDM

A>

P@,P1,P2
<P2>
P@,LCAD_
P1
A_DATA
P1+1
A_DATA

P2,LOAD_
A, LOW P1
A_DATA

A, HIGH P1
A_DATA

P@,P1,P2
<P2>
P@,30LD_
P1
A_DATA
P1+1
A_DATA

P@,HOLD_
A, LOW P1
A_DATA

A, HIGE P1
A_DATA

.o o e

Set Load reg of counter P2 to P1

Test for irndirecticn

Nestec macro must lie within the test
Low byte

High tyte

Low byte

High tyte

Set Hold Reg of counter PZ to P1

Test for indirection

Nested macro must lie within tre test
Low byte

High byte

Low byte

High bdyte

Appendix F — Am9513 Macros for Z80

The following macro code definitions implement the macro command as listed
in the Macro Command Summary (Appendix D). Notice that all macros use only
the A and F registers, all other working registers are unaffected. These
macros are targeted for the Zilog RIO assembler.

S_MASK MACERO #1 #2 #3 #4 #5

; Recursive macro to get correct s-field

COND ‘#e’
S_MASK #2 #3 #4 #5
ENDC
COND (B<#1)&(#1<86)

LLAE DEFL DLAB.CR.(1.SHL.(#1-1))
ENDC
COND NOT. ((@<#1)6&(#1<E))
2?22 #1 5 Illegel counter #
ENDC
ENTM

s_TYPE MACRO #C #1 #2 #3 #4 #5

7 Optimised sequence for multiple register s—-field commands

CCND (#0=20H) " (#0=40H) " (#0=€2K) " (#0=2C0H) " {#r=2A28) " (#0=€0H)

TLAE TEFL #d
S_MASK #1 #2 #3 #4 #5

1T A,TLAE
oUT (A_CTRL),A
ENDC

COND .NCT.((#@=2ZH)”(#@=40H)“(#@=6@h (#0=9C2H) T(#2=CAQF)
2?7 #0 3 Illegal command

ENDC

ENDM

N_TYFE MACRO #1 #2

3 Optimised sequence for single register n-type mmands
CCND (B<#1)6(#1<86)
LD A,#1.0R.#2
0uT (A CTRL),A
ENIC
COND LNOT. ((@<#1)6&(#1<6E))
?2?? #1 5 Illegel counter
ENTC
ENTM
AEM MACRC #1 #2 #3 #4 #5 ; Arm counters, any from 1,5
S_TYPE 20@H #1 #2 #3 #4 #5
ENDM
LOAT MACRO #1 #2 #3 #4 #¥5 § Loed counters, eny from 1,8
S_TYPE 408 #1 #2 #3 #4 #5
ENDM

LD_AERM MACEGC #1 #2 #3 #4 #5 ; Load 'r Arm ccunters, any from 1,5
S_TYPE 6@H #1 #2 #3 #4 #5
ENDM

T(#@=80YH) :

F-1

Appendix F — Am9513 Macros for Z80 (Cont.)

DISARM

SAVE

CRMSAV

SET_

CLEAR

STEP

FCUT

PESET

PCINT

MACEC
S _TYPE
ENDM

MACRC
S_TYPE
ENDM

MACRO
S_TYPE
ENDM

MACRO
N_TYPE
ENDM

MACRO
N_TYPE
ENDM

MACRO
N_TYPE
ENDM

MACRC
COND
1D
CUT
ENLC
COND
LD
ouT
ENDC
CCND
77?2 #1
ENDC
ENDM

MACRO
LD
CUT
LOAD
ENDM

MACRC

COND
Lp

CuT
ENDC
COND
2?7 #1
ENDC
ENDM

#1 #2 #3 #4 $#5 5 Disarm courters, &ny from 1,5
@CQH #1 #2 #3 #4 #5

#1 #2 #% #4 #5 5 Save counters, ary froem 1,5
CACH #1 #2 #3 #4 #5

#1 #2 #3 #4 #5 ; Tiserm ’“n Save counters, any from 1,5
QH #1 #2 #Z #4 #5

#1 3y Set single counter output #1
#1,8E&H

#1 3 Clear single counter output #1
#1,CEQH

#1 y Step single ccunter output #1
#1,0F2E

#1 3y Gate FCGUT on cr off
1#1 ':’OF‘

A,CFEE

(A_CTRL),4

“#1°="0ON"
A,QE6E
(A_CTRL),A

NCT.((“#1°="CF").CR.(“#17="0N"})
y Illegal option

y keset, load &ll counters

#1 #2 y Set data pointer register group, element

((@<#1)6(#1<6)) 0R.{(#1=7)&((@.IE.42)&¥2<4)))
A #1.CR.(#2.SEL.3)
(A_CTRL),A

NCT. (((B<#1)&(#1<6)) OR.((#1=7 &((2.LE.#2)5(#2 4))))
#2

F-2

Appendix F — Am9513 Macros for Z80 (Cont.)

MASTER

TLAB
DLAE
TLAB
DLAX
DLAB
TLAB
TLAB
DLAE
DLAE

MODE

TLAB
LLAB
DLAB
TLAB
TLAB
TLAB
DLAB

MACRO
CCND
1T
CUT
ENDC
COND
1D
curT
ENDC
COND
2?22 #1
ENIC
ENDM

MACRO

DEFL
DEFL
DEFL
DEFL
TEFL
LEFL
DEFL
DEFL
DEFL
POINT
LD
QUT
1D
ouUT
ENDM

MACRC

COND
7?77 #1
ENIC
COND
DEFL
DEFL
DETL
DEFL
DEFL
DEFL
DEFL
COND
PCINT
1D
ouT
LD
CUT
ENDC
CCND
277 #0
ENIC
ENDM

#1 y Set data pointer sequencirg or.cf
‘#1°="CN’

A,QEQH

(A_CTEL),A

“#1°="0F"
A,QESE
(A_CTEL),A

LNOT.((“#1°="0F7).OR.("#1°="0N"))

3 Illegal option

#1 #2 #3 #4 #D #E6 #7 #E #9
; Set Master register
#1 y .day mode
DLAB.CR.(#2.SEL.2) .compar_1
DLAB.OR.(#3.SHL.3) .compar_2
DLAB.OR.(#4.SHL.4) .FOUT_source
DLAR.CR.(#5.5EL.8) .FCUT_divisor
DLAB.CR.(#6.SKEL.12) .FOUT_gate
DLAB.OR.(@.SHL.13) .datea_bus - S bit only
DLAE.GR.(#8.SEL.14) .data_ptr
DLAB.OR.(#S.SHL.15) .scaler
CTRL_GR,MASTER_ Point to Master Register
A,LLAE.MCD.256

“e e e es e Wewe et e -

(A_DATA),A ; Send Low byte first
A,DLAB/256
(A_DATA),A ; Then Eigh bdbyte

#O #1 #2 83 H4 #5 H#E #7

y Set counter F2 mode register
(#1=3).0R.{5<#1)
y Illegal Output Control

<NOT. ((#1=3).0R.(5<#1))

#1 y .output
DLAB.GR.(#2.SHL.3) y .direction
DLAB.OR.(#3.SHL.4) sy .base
DLAB.CR.(#4.SHL.5) y .cortrol
DLAB.OR.(#5.SHL.8) } .source
DLAB.OR.(#6.SHL.12) y .edge
DLAB.CR.(#7.SEL.13) y .gate
(<#0)8 (#2<86)

#0 ,MODE _ 3 Point to counter #1 Mcde
A,DLAF.MCD.256

(A_DATA),A ; Send Low byte
A,DLAB/256

(L_DATA),A ;y Then Figh byte

SNOT. ((@<#0)&(#2<6))
3 Illegel courter #

Appendix F — Am9513 Macros for Z80 (Cont.)

LOAD_REG MACRO
POINT
COND
LD
oUT
LD
ouT
ENDC
CCND
LD
oUT
LD
oUT
ENDC
ENDM

HOLD_EEG MACRO
POINT
COND
1D
CuT
LT
cuT
ENDC
COND
1D
CUT
LD
oyuT
ENDC
ENDM

A>

#0 #1 #2
#0 ,LOAD _
‘4z’

L, (#1)
(A_DATA),A
A, (#1+1)
{A_DATA),A

NCT.("#27)
A,#1.M0D.256
(A DATA) A
A, /zse
(A_TATA)

#2 #1 #2
#9 ,HOLD _
’#2’

, (#1)
(A_DATA),A
A, (#1+1)
(A_DATA),A

SNOT.(“#27)
A,#1.MOD.256
(A_DATA),A
A,#1/256
(A_DATA),A

.o

-. -

.o

-e

-e

Set Locad reg of counter #Z to #1
Test for indirectior
Low byte

High byte

Low byte
Eigh bdyte

Set Hold Reg of counter #2 to #1
Test for indirection

Low bdbyte

High byte

Low byte

High byte

F-4

Appendix G — Am9513 Macros for Z8000

The following macro code definitions implement the macro commands as
listed in the Macro Command Summary (Appendix D). Notice that all macros
use only registers R@. The flag and control word register is altered but
all other working registers are unaffected. These macros are targeted for
the AMD MACZ assembler.

VAR DLAB: CBJECT; % Defire & dummy varieble
DLAB 1= 0
MACRO S_MASK AAj % Build up a dummy s_field
BEGIN
IF @ LT AA AND AA LT €
THEN
DLAB ::= DLAE OR (1 SHL (AA-1))
ELSE
, CALR @FFFFH; % Invalid counter #
ENL)

MACRO S_TYPE BB,BB1,BB2,RE3,EE4,RBB5;

% Optimised sequence for multiple register s-field commards

REGIN

DIAB ::= BB CR @FF@QH;

IF NCT NULL BRE 7 Test for the parameters
THEN

S_MASK BB5;
IF NCT NULL BB4
THEN

S_MASK BB4;
IF NCT NUIL B3B3
THEN

S_MASK BB3;
IF NCT NULL BB2
THEN

S_MASK BBZ;
IF NoT NUDL BR1
THEN

S_MASK BB1;

LD RO ,DLAR;
ouT A_CTRL,EO % Send the command
END;

MACRO N_TYPE CC1,CC2;

% Cptimised sequence for single register n-field commands

BEGIN
IF (@ LT CC1) AND (CC1 LT 6)
THEN
REGIN
LD R2,CC1 CE CC2 OR 2FFQQE;
oUT 4_CTRL,Re
END
ELSE
CALR @FFFFE; % Illegal Counter
ENDS

Appendix G — Am9513 Macros for Z8000 (Cont.)

MACPRG

MACRO

MACEOC

MACRO

MACRO

MACRO

MACRC

MACEO

MACEO

ARM
BEGIN

END;

LOAD
BEGIN

ENTS

LD_ARM
BEGIN

END;

DISARM
BEGIN

END}

SAVE
BEGIN

ENDS

DEMS AV
BEGIN

END;

SET_
BEGIN

END;

CLEAR
EEGIN
END;
STEP
BEGIN
ENDS

FOUT
BEGIN
IF JJ4
THEN
BEGIN

END
ELSE

END;

DD1,DC2,DL3,TD4,LD5; % Arm ccunters, eny frem 1.5

S_TYPE 2¢H,DIL1,ID2,DD3,DD4,LLS

EE1,EE2,EE3,EE4,EES; % Load counters, ary frem 1,5

S_TYPE 42H,EE1,EE2,EE3,LE4,EED

FF1,FF2,FF3,FF4,FF5; % Load ‘n Arm counters, any from 1,5

S_TYPE 6QH,FF1,FF2,FF3,FF4,FF5

6G61,6G62,663,G6G4,GG5; % Disarm counters, any from 1,5
S_TYPE ©C@®,GG1,G62,6G63,6G4,GGE

FE1,HE2,HE3,HH4,HES) % Save counters, any from 1,5

S_TYPE ©2A%E,EH1,HH2,HH3,EH4,HHS

111,112,113,114,115; % Disarm “n Save counters, any from

S_TYPE &e¥,II1,I1e,113,114,II5

JJ1j % Set single covrter output JJ1
N_TYPE JJ1,QESH

JJ2;

>0

Clear single counter output JJ2

N_TYPE JJ2,0E2E

JJg; % Step sirgle courter output JJ3
N_TYPE JJ3,0FCH

743 % Gate FOUT on or off
EQ CF

LD Re,PFFEEH;

oUT A_CTRL,RO

IF JJ4 EC ON

THEN
BEGIN
1D ®0,0FFE6E;
ouT &_CTEL,E¢
END
ELSE

CALE QZFFFFE; z Illegel request

()]

G-2

Appendix G — Am9513 Macros for Z8000 (Cont.)

MACRO

MACKO

MACRC

MACRO

RESET H % Eeset, load all counters
BEGIN

LD RO ,0FFFFH;

oUT A_CTRL,EQ; % Official reset

LOAD 1,2,3,4,5; % Clear any set TC’s;

LD RO,1;

ouT A CTRL,RO; % Dummy set data pointer
LD R@,0FFEFH;

ouT A_CTRL,R® % Set 16 bvit data bus

END;

POINT KK1,KK2 ; % Set data pointer register group,
BEGIN

IF ((2 LT KK1 AND KK1 LT 6) OR KK1 EQ 7) AND @ LE KK2 AND KEK2 LT 4
THEN

BEGIN
LD RO,KK1 OR (KK2 SHL 3) OR QFFQQH;
oUT A_CTRL,RO
END
ELSE
CALR OFFFFH; % Illegal request
END;
DPS P1; % Set data pointer sequencing on/of
BEGIN
IF P1 EQ ON
THEN
BEGIN
LD RO,DFFEQH;
cuT A_CTRL,RO
END
ELSE
IF P1 EQ OF
THEN
BEGIN
LD RO ,0FFE8H;
ouT A_CTRL,RO®
END
ELSE
CALR OFFFFH; % Illegal request
END;
MASTER 1LL1,LL2,113,1l4,LL5,L16,LL7,LL8,LLO;
BEGIN
DLAB ::= LL1; % .day_mode
DLAB ::= DLAB OR (LL2 SHL 2); % .compar_1
DLAB ::= DLAB OR (LL3 SHL 3); % .compar_2
DLAB ::= DLAB OR (LL4 SHL 4); % .FOUT_source
DLAB ::= DLAB OR (LL5 SHL 8); % .FOUT_divisor
DLAB ::= DLAB OR (LL6 SHL 12); % .FOUT_gate
DLAB ::= DLAB OR (1 SHL 13); % .data_bus - 16 bit only
DLAR ::= DLAB OR (LL& SHL 14); % .data_ptr
DLAE ::= DLAB OR (LL9 SHL 15); % .scaler
POINT 7,25 % Point to Master Register
LD R?,DLAB;
OoUT A_DATA,ROQ % Then High tyte
END;

element

G-3

Appendix G — Am9513 Macros for Z8000 (Cont.)

MACEO

MACRO

MACRO

A>

MODE_REG MM@,MM1,MM2,MM3,MM4 ,MM5 ,MME ,MM7}

% Illegal Output Control

BEGIN
IF MM1 EQ 3 OFR 5 LT MM1
THEN
CALR QFFFFE
ELSE
BEGIN
DLAR ::= MM1;
DLAB ::= DLAB OR (MM2 SHL
DLAB ::= DIAB OR (MM3 SHIL
DLAR ::= DLAB CR (MM4 SHL
DLAE ::= DLAB CR (MM5 SHL
DLAR ::= DLAB OR (MM6 SEL
DLAE ::= DLAB OR (MM7 SEL
END;
IF ¢ LT MMZ AND MM@ LT 6
THEN
BEGIN
POINT MMO, 23
LD RO,DLAB;
oUT A_TATA,RD
END :
ELSE

CALR OFFFFH; Z Illegal

ENDS

LOAD_REG NN@,NN1j;
BEGIN
POINT NN@,13

LD RO,NN1;
ouT A_DATA,R®
END;

HOLD_REG PP@,PP1;
BEGIW
POINT PP@,2;

LD RO,PP1;
OuT A_DATA, ke
END;

-e

el el S N
€A D) — — —

e e we ws e

20 IR I0AL HRILHL

>0

counter

IO R e

.output
.direction
.base
.control
.source
.edge
.gate

Point to counter MM1 Mode

Send 16 bit werd

Set Lcad reg of NN2 to NN1

Notice that an explicit indirection
flag {I) is not needed by Z£222
Send 16 bit werd

Set Hold Reg of PFZ tc PP1

Send 16 bit word

G-4

Appendix H — Am9513 C Definitions

The following definitions are provided for greater clarity in the C
These definitions are also utilized by the Am9513 evaluation

examples.
program.

#define
#define
#define
#define

#define
#define

/*

#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define

Vi

#define
#define
#define
#define

#define
#define

#define
#define

#define
#define

THEN /¥ ignore */
BEGIN {
END }
RECORD struct
CONTROL @XDA /% 9513 port addresses
DATA #XD8
master and counter fields %/

/¥ .FOUT_source .scurce values
TC_NM1 2 /¥ .source only
SRC_1 1 /* BHardware source pins
SRC_2 2
SRC_2 3
SRC_4 4
SRC_S 5
GATE_1 6 /* Hardware gate pins
GATE 2 7
GATE 3 8
GATE 4 9
GATE_S 2XA
F1 2XB /% Frequency scaler taps
F2 2XC
F3 2XD
F4 ZXE
F5 2XF
BCD 1 /% .scaler modes
BINARY 2
master fields */
TOD_CFF 2 /% .day_mode values
TOD_58KZ 1
TOD_60HZ 2
TOD_18@HZ 3
DISABLE [/* .comparl,2 values
ENABLE 1
ON 2 /* .FOUT_gate .data_ptr values
OFF 1
RUS_E& 2 /* .bus_width values
BUS_16 1

*/

*/
*/

*/

*/

*/

*/

Appendix H — Am9513 C Definitions (Cont.)

/*

#define
#define
#define
#define
#define

#define
#define

/*

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

/*

#define
#define
#define
#define

#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

counter fields

OFF_LO_TC
ACT_HI_TC
TC_TCGGLE
OFF_0C_TC
ACT_LOTTC

UP
DOWN

%/
) /%
1
2
4
5
1 /%
(]

counter mode control modes

MODE_AEC
MCDE_DEF
MCDE_GHI
MODE_JKL
MODE_mNO
MODE _pGQR
MODE_Stu
MODE_Vwx

RISE
FALL

NO_GATE
HL_TC_NM1
HL_NPT_GATE
HL_NM1_GATE
HL_GATE_N
LL_GATE_N
HE_GATE_N
LE_GATE_N

OO RN
~N
*

[l
N
3%

NN R

load data pointer fields

MODE _
LOAD_
HOLD_
EOLD_CYCLE

ALARM1
ALARMZ2
MASTER
STATUS

CTRL_GROUP

LCCAL
ASCICR
ASCILF
UPPEE_CASE
RD

WR
SEQUENCE

NOT_SEGUENCE

LEVEL
ELGE

] /¥
1

2

2

o /%
1

2

3

7 /%
register
gXD

2XA

¢XDF /*
2 /%
1

5 / e
6

7 /*
e

Modes

A,
D,
Modes G,
Jy
N,
Modes G ’

.output valu

.direction v

Modes
Modes

Modes

Mode V

.edge values

.gate values

.element val

.element val

.group value

es

alues

M is illegal

¥/

ues

ues {(CTRL_GRCUP)

s {inc.

mask for upper case

read or write

types of &ccess

types of gat

ing

counters

*/

*/

:::/

*/
*/

3% /

H-2

Appendix | — Am9513 Assembler Definitions

The following definitions are provided for greater c]ar{ty in the
assembler examples.

[; 4m9513 equates file for macros - Am82c8/AmE@S5/258 format |

TC_NM1
SRC_1
SRC_2
SRC_3
SRC_4
SRC_5

GATE_1
GATE_2
GATE_2
CATE_4
CATE_5

F1
2
F3
Fa
F5

BCD
BINARY

’

TOD_OFF
TCD_5@HZ
TOD_6@HZ
TCD_1¢@¢HZ

LISABLE
ENABLE

CN
OF

BUS_8
BUS_16

Master ard courter Mode register fvactions

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

Master register

EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

QoYM bk GINHED

QAH

0BH
2CH
2DH
QER
OFH

1
[

- »Q AR

Lol

-e

3 FOUT source and count source definitions
TC N-1 is count source only
Hardware source pirns

Hardware gate pins

Frequency scaler tap points

Cournting modes

functions

Time of day counting modes

Comparators 1 and 2 modes

FOUT gate and data pointer values

8 or 16 bit bdus

Appendix | - Am9513 Assembler Definitions (Cont.)

3 Counter Mode register functions

3y TC output modes

OFF_LO_TC EQU ¢ + Output inactive, low

ACT_HI_TC EQU 1 i Active hi terminal count pulse
TC_TOGGLE EQU 2 i TC toggled

CFF_0OC_TC EQU 4 3 Iractive, kigh impedarce

ACT_LO_TC EQU 5 3 Active lo terminal count pulse

UP EQU 1 3+ Count directions

TCWN EQU 2

MCDE_ABC EQU @ y Counter mode control codes - A,E,C
MCDE_DEF EQU 1 3 Modes D,E,F

MCDE_GHI EQU 2 + Modes G,H,I

MOTE_JKL EQU 3 y Modes J,K,L

MODE_mNO EQU 4 y Modes N,L - notice Mode M is illegsl
MCDE_PpQR EQU 5 y Mcdes Q,R

MODE_Stu EQU 6 7 Mode S

MCDE_Vwx EQU 7 y Mode V

FISE EQU @ 3y Active count edge values

FALL FQU 1

NC_GATE EQU 2 y Counter gating modes

EL_TC_NM1 EQU 1 3 Active Hi Level TC N-1
HL_NP1_GATE EQU 2 y Active Hi Level Gete N+1
HL_NM1_GATE EQU 3 y Active Hi Level Gate N-1

EL_GATE_N EQU 4 i Active Hi Level Gate N

LL_GATE_N EQU & i Active Lo lLevel Gate N

EE_GATE_N EQU 6 7 Active Hi Edge Gate N

IE_GATE_N EQU 7 i Active Lo Edge Gate N

MCDE_ EQU 92 y» Data pointer element values

LOAD_ EQU 1

HOLD _ EQU 2

HOLD_CY EQU &

ALARM1_ EQU 0 7 Data pointer element values (CTRL GR)
ALARMZ_ EQU 1

VASTER_ EQU 2

STATUS _ EQU 3

CTRL_GR EQU 7 ; Data peinter group values (inc. counters 1-8)

Appendix | - Am9513 Assembler Definitions (Cont.)

% Am9513 equates file for macros — Z84@¢ format]

CONST

% Master and counter Mode register functions

TC_NM1
SRC_1
SRC_2
SRC_3
SRC4
SRC_5
GATE_1
GATE_2

GATE_3

GATE_4
GATE_5

Fl
¥2
F3
F4
¥5

ECT
BINARY

[O I nwnnnn

wowonnn

[C N VRl
o o

1,

303

% Master register

TOD_OFF
TOD_5@HZ
10D_68H2
TOD_10@HZ

DISABLE
ENABLE

CN
CF

BUS_8
BUS_1€

"ou

2,
1,
2,
3,

2,
1,

2,
1,

2,
1,

%

% FOUT source and count source definitions
TC N-1 is count source only
Hardware source pins

Hardware gate pins

Frequency scaler tap points

Counting modes

functions

Time of day counting modes

Comparators 1 and 2 modes

FOUT gate and data pointer values

8 or 16 bit bus

Appendix | — Am9513 Assembler Definitions (Cont.)

% Counter Mode register functions

CFF_LO_TC
ACT_HI_TC
TC_TOGGLE
CFF_0C_TC

ACT_LO_TC

UP
DCWN

MODE_ABC
MODE_DEF
MODE_GHI
MODE_JKL
MCDE_mNC
MODE_PpQR
MODE_Stu
MCDE_Vwx

RISE
FALL

NO_GATE
HL_TC_NM1
HL_NPT_GATE
EL_NM1_GATE
HL GATE_N
LL_GATE_N
HE_GATE_N
IE_GATE_N

MCDE_
10AD_
ECLD_
KOLD_CY

ALARM1 _
ALARM2
MASTER_
STATUS”

CTRL_GR

"

(U L T T 1}

Howomononnn

oo

nwwn

g,
i,
2,
4,

3R IR RIVIL IR IR 22 2R 30 DIR¥e

30 MR LM IR AR

% TC output modes

Output inactive, low

Active hi terminal count pulse

TC toggled

Inactive, high impedance

Active 1o terminal count pulse
Count directions

Counter mode control codes - 4,B,C
Modes D,k,F

Modes G,H,I

Modes J,K,L

Modes N,L - notice Mode M is illegsl
Modes Q,k

Mode S

Mode V

Active count edge values

Counter gating modes
Active Hi Level TC N-1
Active Hi Level Gate N+1
Active Hi Level Gate N-1
Active Hi Level Gate AN

‘Active Lo Level Gate N

Active Hi Edge Gate N
Active Lo Edge Gate N

Data pointer element values

Data pointer element values ‘CTRL_GR)

Data pointer group values f{inc. counters 1-5)

World-Wide
Sales
Offices

Advanced
Micro
Devices

Pu

Advanced Micro Devices maintains a network of representatives and distributors in the U.S. and
around the world. For a sales agent nearest you, call one of the AMD offices listed below.

U.S. AND CANADIAN SALES OFFICES

SOUTHWEST AREA

Advanced Micro Devices
360 N. Sepulveda, Suite 2075
El Segundo, California 90245
Tel: (213) 640-3210

Advanced Micro Devices
10050 N. 25th Drive

Suite 235

Phoenix, Arizona 85021
Tel: (602) 242-4400

Advanced Micro Devices

4000 MacArthur Beulevard

Suite 5000

Newport Beach, California 92660
Tel: (714) 752-6262

Advanced Micro Devices
21600 Oxnard Street, Suite 675
Woodland Hills, California 91367
Tel: (213) 992-4155

Advanced Micro Devices
9619 Chesapeake Drive #210
San Diego, California 92123
Tel: (619) 560-7030

NORTHWEST AREA

Advanced Micro Devices
1245 Oakmead Parkway
Suite 2900

Sunnyvale, California 94086
Tel: (408)720-8811

Advanced Micro Devices
1873 South Bellaire Street
Suite 920

Denver, Colorado 80222
Tel: (303) 691-5100

NORTHWEST AREA (Cont.)

Advanced Micro Devices

One Lincoln Center, Suite 230
10300 Southwest Greenburg Road
Portland, Oregon 97223

Tel: (503) 245-0080

Advanced Micro Devices
Honeywell Ctr., Suite 1002
600 108th Avenue N.E.
Bellevue, Washington 98004
Tel: (206) 455-3600

MID-AMERICA AREA

Advanced Micro Devices
500 Park Boulevard, Suite 940
Itasca, lllinois 60143

Tel: (312) 773-4422

Advanced Micro Devices
9900 Bren Road East, Suite 601
Minnetonka, Minnesota 55343
Tel: (612) 938-0001

Advanced Micro Devices
3592 Corporate Drive, Suite 108
Columbus, Ohio 43229

Tel: (614) 891-6455

Advanced Micro Devices
8240 MoPac Expressway
Two Park North, Suite 385
Austin, Texas 78759

Tel: (512) 346-7830

Advanced Micro Devices
6750 LBJ Freeway, Suite 1160
Dallas, Texas 75240

Tel: (214) 934-9099

MID-ATLANTIC AREA

Advanced Micro Devices
40 Crossways Park Way
Woodbury, New York 11797
Tel: (516) 364-8020

Advanced Micro Devices
290 Elwood Davis Road
Suite 316

Liverpool, New York 13088
Tel: (315) 457-5400

Advanced Micro Devices
Waterview Plaza Suite 303
2001 U.S. Route #46
Parsippany, New Jersey 07054
Tel: (201) 299-0002

Advanced Micro Devices
110 Gibralter Road #110
Horsham, Pennsylvania 19044
Tel: (215) 441-8210

TWX: 510-665-7572

Advanced Micro Devices
Commerce Plaza

5100 Tilghmant Street, Suite 320
Allentown, Pennsylvania 18104
Tel: (215) 398-8006

FAX: 215-398-8090

Advanced Micro Devices

205 South Avenue
Poughkeepsie, New York 12601
Tel: (914) 471-8180

TWX: 510-248-4219

NORTHEAST AREA

Advanced Micro Devices

6 New England Executive Park
Burlington, Massachusetts 01803
Tel: (617) 273-3970

NORTHEAST AREA (Cont.)

Advanced Micro Devices (Canada) Ltd.
2 Sheppard Avenue East

Suite 1610

Willowdale, Ontario

Canada M2N5Y7

Tel: (416) 224-5193

SOUTHEAST AREA

Advanced Micro Devices
7223 Parkway Drive #203
Dorsey, Maryland 21076
Tel: (301) 796-9310

FAX: 796-2040

Advanced Micro Devices
7850 Ulmerton Road, Suite 1A
Largo, Florida 33541

Tel: (813) 535-9811

Advanced Micro Devices
4740 North State Road #7
Suite 102

Ft. Lauderdale, Florida 33319
Tel: (305) 484-8600

Advanced Micro Devices

6755 Peachtree Industrial Boulevard
Suite 104

Atlanta, Georgia 30360

Tel: (404) 449-7920

Advanced Micro Devices

8 Woodlawn Green, Suite 220
Woodlawn Road

Charlotte, North Carolina 28210
Tel: (704) 525-1875

Advanced Micro Devices

303 Williams Avenue Southwest
Suite 118

Huntsville, Alabama 35801

Tel: (205) 536-5505

INTERNATIONAL SALES OFFICES

BELGIUM

Advanced Micro Devices
Overseas Corporation

Avenue de Tervueren, 412, bte 9
B-1150 Bruxelles

Tel: (02) 771 99 93

TELEX: 61028

FAX: 7623712

FRANCE

Advanced Micro Devices, S.A.
Silic 314, Immeuble Helsinki

74, rue d'Arcueil

F-94588 Rungis Cedex

Tél: (01) 687.36.66

TELEX: 202053

GERMANY

Advanced Micro Devices GmbH
Rosenheimer Str. 139

D-8000 Muenchen 80

Tel: (089) 40 1976

TELEX: 05-23883

Advanced Micro Devices GmbH
Feuerseeplatz 4/5

D-7000 Stuttgart 1

Tel: (0711) 62 33 77

TELEX: 07-21882

Advanced Micro Devices GmbH
Zur Worth 6

D-3108 Winsen/Aller

Tel: (05143) 53 62

TELEX: 925287

HONG KONG

Advanced Micro Devices
1303 World Commerce Centre
Harbour City

11 Canton Road

Tsimshatsui, Kowloon

Tel: (852) 3695377

TELEX: 50426

FAX: (852) 123 4276

ITALY

Advanced Micro Devices S.R.L.

Centro Direzionale
Palazzo Vasari, 3° Piano
1-20090 MI2 — Segrate (M)
Tel: (02) 2154913-4-5
TELEX: 315286

JAPAN

Advanced Micro Devices, K.K.
Dai 3 Hoya Building

8-17, Kamitakaido 1 chome
Suginami-ku, Tokyo 168

Tel: (03) 329-2751

TELEX: 2324064

FAX: (03) 326 0262

SWEDEN

Advanced Micro Devices AB
Box 7013

S-172 07 Sundbyberg

Tel: (08)98 1235

TELEX: 11602

UNITED KINGDOM

Advanced Micro Devices (U.K.) Ltd.
A.M.D. House,

Goldsworth Road,

Woking,

Surrey GU21 1JT

Tel: Woking (04862) 22121

TELEX: 859103

Order # 03402C

&

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place
P.O. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

LB-CP-5M-5/84-0

	00580305.tif
	00580306.tif
	00580307.tif
	00580308.tif
	00580309.tif
	00580310.tif
	00580311.tif
	00580312.tif
	00580313.tif
	00580314.tif
	00580315.tif
	00580316.tif
	00580317.tif
	00580318.tif
	00580319.tif
	00580320.tif
	00580321.tif
	00580322.tif
	00580323.tif
	00580324.tif
	00580325.tif
	00580326.tif
	00580327.tif
	00580328.tif
	00580329.tif
	00580330.tif
	00580331.tif
	00580332.tif
	00580333.tif
	00580334.tif
	00580335.tif
	00580336.tif
	00580337.tif
	00580338.tif
	00580339.tif
	00580340.tif
	00580341.tif
	00580342.tif
	00580343.tif
	00580344.tif
	00580345.tif
	00580346.tif
	00580347.tif
	00580348.tif
	00580349.tif
	00580350.tif
	00580351.tif
	00580352.tif
	00580353.tif
	00580354.tif
	00580355.tif
	00580356.tif
	00580357.tif
	00580358.tif
	00580359.tif
	00580360.tif
	00580361.tif
	00580362.tif
	00580363.tif
	00580364.tif
	00580365.tif
	00580366.tif
	00580367.tif
	00580368.tif
	00580369.tif
	00580370.tif
	00580371.tif
	00580372.tif
	00580373.tif
	00580374.tif
	00580375.tif
	00580376.tif
	00580377.tif
	00580378.tif
	00580379.tif
	00580380.tif
	00580381.tif
	00580382.tif
	00580383.tif
	00580384.tif
	00580385.tif
	00580386.tif
	00580387.tif
	00580388.tif
	00580389.tif
	00580390.tif
	00580391.tif
	00580392.tif
	00580393.tif
	00580394.tif
	00580395.tif
	00580396.tif
	00580397.tif
	00580398.tif
	00580399.tif
	00580400.tif
	00580401.tif
	00580402.tif
	00580403.tif
	00580404.tif
	00580405.tif
	00580406.tif
	00580407.tif
	00580408.tif
	00580409.tif
	00580410.tif
	00580411.tif
	00580412.tif
	00580413.tif
	00580414.tif
	00580415.tif
	00580416.tif
	00580417.tif
	00580418.tif
	00580419.tif
	00580420.tif
	00580421.tif
	00580422.tif
	00580423.tif
	00580424.tif
	00580425.tif
	00580426.tif
	00580427.tif
	00580428.tif
	00580429.tif
	00580430.tif
	00580431.tif
	00580432.tif
	00580433.tif
	00580434.tif
	00580435.tif
	00580436.tif
	00580437.tif
	00580438.tif
	00580439.tif
	00580440.tif
	00580441.tif
	00580442.tif
	00580443.tif
	00580444.tif
	00580445.tif
	00580446.tif
	00580447.tif
	00580448.tif
	00580449.tif
	00580450.tif
	00580451.tif
	00580452.tif
	00580453.tif
	00580454.tif
	00580455.tif
	00580460.tif

